Spherical Bessel functions and explicit quadrature formula
نویسندگان
چکیده
An evaluation of the derivative of spherical Bessel functions of order n + 1 2 at its zeros is obtained. Consequently, an explicit quadrature formula for entire functions of exponential type is given.
منابع مشابه
Orthogonality, Lommel integrals and cross product zeros of linear combinations of Bessel functions
The cylindrical Bessel differential equation and the spherical Bessel differential equation in the interval [Formula: see text] with Neumann boundary conditions are considered. The eigenfunctions are linear combinations of the Bessel function [Formula: see text] or linear combinations of the spherical Bessel functions [Formula: see text]. The orthogonality relations with analytical expressions ...
متن کاملA Numerical Integration Formula Based on the Bessel Functions
In this paper, we discuss the properties of a quadrature formula with the zeros of the Bessel functions as nodes for integrals ∫ ∞ −∞ |x|f(x)dx, where ν is a real constant greater than −1 and f(x) is a function analytic on the real axis (−∞,+∞). We show from theoretical error analysis that (i) the quadrature formula converges exponentially, (ii) it is as accurate as the trapezoidal formula over...
متن کاملA general quadrature formula using zeros of spherical Bessel functions as nodes
© SMAI, EDP Sciences, 1999, tous droits réservés. L’accès aux archives de la revue « ESAIM: Modélisation mathématique et analyse numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce...
متن کاملProduct Formula for Jacobi Polynomials, Spherical Harmonics and Generalized Bessel Function of Dihedral Type
Abstract. We work out the expression of the generalized Bessel function of B2-type derived in [4]. This is done using Dijskma and Koornwinder’s product formula for Jacobi polynomials and the obtained expression is given by multiple integrals involving only a normalized modified Bessel function and two symmetric Beta distributions. We think of that expression as the major step toward the explici...
متن کاملNumerical evaluation of Bessel function integrals for functions with exponential dependence
A numerical method for the calculation of Bessel function integrals is proposed for trial functions with exponential type behavior and evaluated for functions with and without explicit exponential dependence. This method utilizes the integral representation of the Bessel function to recast the problem as a double integral; one of which is calculated with Gauss-Chebyshev quadrature while the oth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 66 شماره
صفحات -
تاریخ انتشار 1997