Molecular pathways: BRAF induces bioenergetic adaptation by attenuating oxidative phosphorylation.

نویسندگان

  • Rizwan Haq
  • David E Fisher
  • Hans R Widlund
چکیده

Cancers acquire mutations in cooperating pathways that sustain their growth and survival. To support continued proliferation, tumor cells adapt their metabolism to balance energy production with their augmented biosynthetic needs. Although most normal differentiated cells use mitochondrial oxidative phosphorylation (OXPHOS) as the bioenergetic source, cancer cells have been proposed to rely principally on cytoplasmic glycolysis. The molecular basis for this shift, termed the Warburg effect, is the subject of intense investigation, because mechanistic understanding may lead to novel approaches to target the altered metabolism of cancer cells. Recently, mutations BRAF(V600E) have emerged as a major regulator of metabolic homeostasis. Melanoma cells may use a metabolic shift to circumvent BRAF(V600E)-induced senescence though limiting their reliance on OXPHOS and promote proliferation. Furthermore, BRAF(V600E) acts to suppress expression of the melanocyte master regulator microphthalmia-associated transcription factor (MITF) and the mitochondrial biogenesis coactivator PGC1α. Accordingly, therapeutic inhibition of BRAF(V600E) reverses metabolic reprogramming in melanoma cells and elevates OXPHOS through increased MITF-PGC1α levels. BRAF-targeted drugs modulate the metabolic state of malignant melanoma cells, and counteracting these adaptive responses using pharmacologic agents may prove useful in combinatorial therapeutic strategies. Clin Cancer Res; 20(9); 2257-63. ©2014 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Pathways Molecular Pathways: BRAF Induces Bioenergetic Adaptation by Attenuating Oxidative Phosphorylation

Cancers acquire mutations in cooperating pathways that sustain their growth and survival. To support continued proliferation, tumor cells adapt their metabolism to balance energy production with their augmented biosynthetic needs. Although most normal differentiated cells use mitochondrial oxidative phosphorylation (OXPHOS) as the bioenergetic source, cancer cells have been proposed to rely pri...

متن کامل

Bergapten induces metabolic reprogramming in breast cancer cells.

Alterations in cellular metabolism are among the most consistent hallmarks of cancer. Herein, after a comprehensive metabolic phenotype characterization of MCF7 and ZR75 breast cancer cells, we investigated the activity of bergapten (Bg), a plant-derived compound, against breast cancer. The study of different biochemical pathways involved in cell metabolism revealed that the two cell lines have...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

Critical illness and flat batteries

An exaggerated, dysregulated host response to insults such as infection (i.e. sepsis), trauma and ischaemia-reperfusion injury can result in multiple organ dysfunction and death. While the focus of research in this area has largely centred on inflammation and immunity, a crucial missing link is the precise identification of mechanisms at the organ level that cause this physiological-biochemical...

متن کامل

Gene regulatory networking reveals the molecular cue to lysophosphatidic acid‐induced metabolic adaptations in ovarian cancer cells

Extravasation and metastatic progression are two main reasons for the high mortality rate associated with cancer. The metastatic potential of cancer cells depends on a plethora of metabolic challenges prevailing within the tumor microenvironment. To achieve higher rates of proliferation, cancer cells reprogram their metabolism, increasing glycolysis and biosynthetic activities. Just why this me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 20 9  شماره 

صفحات  -

تاریخ انتشار 2014