A Class of Linearly Implicit Numerical Methods for Solving Stiff Ordinary Differential Equations
نویسندگان
چکیده
We introduce ABC-schemes, a new class of linearly implicit one-step methods for numerical integration of stiff ordinary differential equation systems. Formulas of ABC-schemes invoke the Jacobian of differential system similary to the methods of Rosenbrock type, but unlike the latter they include also the square of the Jacobian matrix.
منابع مشابه
On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملLinearly implicit quantization-based integration methods for stiff ordinary differential equations
In this paper, new integration methods for stiff ordinary differential equations (ODEs) are developed. Following the idea of quantization–based integration (QBI), i.e., replacing the time discretization by state quantization, the proposed algorithms generalize the idea of linearly implicit algorithms. Also, the implementation of the new algorithms in a DEVS simulation tool is discussed. The eff...
متن کاملTwo Point Fully Implicit Block Direct Integration Variable Step Method for Solving Higher Order System of Ordinary Differential Equations
Two point fully implicit block method of variable step size is developed for solving directly the second order system of Ordinary Differential Equations (ODEs). This method will estimate the solutions of Initial Value Problems (IVPs) at two points simultaneously. The method developed is suitable for the numerical integration of non stiff and mildly stiff differential systems. Numerical results ...
متن کاملExponential Time Differencing for Stiff Systems
We develop a class of numerical methods for stiff systems, based on the method of exponential time differencing. We describe schemes with secondand higher-order accuracy, introduce new Runge–Kutta versions of these schemes, and extend the method to show how it may be applied to systems whose linear part is nondiagonal. We test the method against other common schemes, including integrating facto...
متن کامل