Experimental insights on the function of ancillary pollen and stigma polymorphisms in plants with heteromorphic incompatibility.

نویسندگان

  • Joana Costa
  • Sílvia Castro
  • João Loureiro
  • Spencer C H Barrett
چکیده

Most heterostylous plants possess a reciprocal arrangement of stigmas and anthers (reciprocal herkogamy), heteromorphic self-incompatibility, and ancillary polymorphisms of pollen and stigmas. The topographical complementarity hypothesis proposes that ancillary polymorphisms function in the rejection of incompatible pollen thus promoting disassortative pollination. Here, we test this hypothesis by investigating patterns of pollen transfer and capture in populations of dimorphic Armeria maritima and A. pubigera and distylous Limonium vulgare (Plumbaginaceae), and by studying pollen adherence and germination patterns in A. maritima following controlled hand-pollinations. Armeria lacks reciprocal herkogamy allowing the evaluation of the extent to which ancillary polymorphisms affect the composition of pollen loads. We compared the amounts of compatible and incompatible pollen on stigmas in natural populations and calculated the proficiencies of pollen transfer for each mating type. We detected disassortative pollination in each species, and mating types did not differ in compatible pollen capture, although cob stigmas captured more incompatible pollen. Controlled hand-pollinations revealed the failure of incompatible pollen to adhere and germinate on stigmas. Our results provided evidence that, while structural in nature, pollen-stigma dimorphisms are tightly associated with heteromorphic incompatibility and likely function to promote disassortative pollination, especially in the absence of reciprocal herkogamy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of MLPK Pathway in Intraspecies Unilateral Incompatibility Regulated by a Single Locus With Stigma and Pollen Factors

Plants have evolved many systems to prevent undesirable fertilization. Among these, incompatibility is a well-organized system in which pollen germination or pollen tube growth is inhibited in pistils. We previously found that a novel one-way pollen-stigma incompatibility response [unilateral incompatibility (UI)] occurred between two self-incompatible Brassica rapa plants, a Turkish line, and ...

متن کامل

Frequency-dependent variation in reproductive success in Narcissus: implications for the maintenance of stigma-height dimorphism.

Negative frequency-dependent selection is a major selective force maintaining sexual polymorphisms. However, empirical demonstrations of frequency-dependent reproductive success are rare, particularly in plants. We investigate this problem by manipulating the frequencies of style morphs in a natural population of Narcissus assoanus, a self-incompatible herb with style-length dimorphism and intr...

متن کامل

The evolution of dominance in sporophytic self-incompatibility systems. II. Mate availability and recombination.

Sporophytic self-incompatibility (SSI) is a self-pollen recognition system that enforces outcrossing in plants. Recognition in SSI systems is typically controlled by a complex locus (S-locus) with separate genes that determine pollen and stigma specificity. Experimental studies show that S-alleles can be dominant, recessive, or codominant, and that the dominance level of a given S-allele can de...

متن کامل

The role of self-incompatibility systems in the prevention of bi-parental inbreeding

11 Hermaphroditic plants experience inbreeding through both self-fertilization and bi-parental inbreeding. Therefore, many plant species have evolved either heteromorphic (morphology-based) or homomorphic (molecular-based) self-incompatibility (SI) systems. These SI systems limit extreme inbreeding through self-fertilization and, in the case of homomorphic SI systems, have the potential to limi...

متن کامل

INTRODUCTION Cell recognition plays a key role in biology: cells of the immune system can identify foreign invaders, targeted cell migrations are essential for animal development, and gametes

Cell recognition plays a key role in biology: cells of the immune system can identify foreign invaders, targeted cell migrations are essential for animal development, and gametes bind in a species-specific manner. Here we characterized the nature of cell recognition at the earliest stage of Arabidopsis reproduction, namely the binding of pollen grains to female stigma cells. This interaction oc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 71 1  شماره 

صفحات  -

تاریخ انتشار 2017