Elsevier Editorial System(tm) for International Journal of Machine Tools and Manufacture Manuscript Draft Title: Adaptive Monte Carlo Applied to Uncertainty Estimation in Five Axis Machine Tool Link Errors Identification with Thermal Disturbance

نویسنده

  • Loïc Andolfatto
چکیده

Knowledge of a machine tool axis to axis geometric location errors allows compensation and corrective actions to be taken to enhance its volumetric accuracy. Several procedures exist, involving either lengthy individual test for each geometric error or faster single tests to identify all errors at once. This study focuses on the closed kinematic chain method which uses a single setup test to identify the eight link errors of a five axis machine tool. The identification is based on volumetric error measurements for different poses with a non-contact Cartesian measuring instrument called CapBall, developed in house. In order to evaluate the uncertainty on each identified error, a multi-output Monte Carlo approach is implemented. Uncertainty sources in the measurement and identification chain -such as sensors output, machine drift and frame transformation uncertainties -can be included in the model and propagated to the identified errors. The estimated uncertainties are finally compared to experimental results to assess the method. It also reveals that the effect of the drift, a disturbance, must be simulated as a function of time in the Monte Carlo approach. Results shows that the machine drift is an important uncertainty source for the machine tested. Adaptive Monte Carlo applied to uncertainty estimation in five axis machine tool link errors identification with thermal disturbance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Monte Carlo applied to uncertainty estimation in a five axis machine tool link errors identification

Knowledge of a machine tool axis to axis geometric location errors allows compensation and corrective actions to be taken to enhance its volumetric accuracy. Several procedures exist, involving either lengthy individual test for each geometric error or faster single tests to identify all errors at once. This study focuses on the closed kinematic chain method which uses a single setup test to id...

متن کامل

Evaluation of the RtDosePlan Treatment Planning System using Radiochromic Film and Monte Carlo Simulation

Introduction: GafChromic EBT films are one of the self-developing and modern films commercially available for dosimetric verification of treatment planning systems (TPSs). Their high spatial resolution, low energy dependence and near-tissue equivalence make them suitable for verification of dose distributions in radiation therapy. This study was designed to evaluate the dosimetric parameters of...

متن کامل

A Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer

This paper presents a new adaptive Sliding-Mode flux observer for speed sensorless and rotor flux control of three-phase induction motor (IM) drives. The motor drive is supplied by a three-level space vector modulation (SVM) inverter. Considering the three-phase IM Equations in a stator stationary two axis reference frame, using the partial feedback linearization control and Sliding-Mode (SM) c...

متن کامل

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

Applying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties

The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case.  Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010