New Examples of Complete Ricci Solitons
نویسندگان
چکیده
The Ricci soliton condition reduces to a set of ODEs when one assumes that the metric is a doubly-warped product of a ray with a sphere and an Einstein manifold. If the Einstein manifold has positive Ricci curvature, we show there is a one-parameter family of solutions which give complete non-compact Ricci solitons.
منابع مشابه
A Characterization of Koiso’s Typed Solitons
By extending Koiso’s examples to the non-compact case, we construct complete gradient Kähler-Ricci solitons of various types on certain holomorphic line bundles over compact Kähler-Einstein manifolds. Moreover, a uniformization result on steady gradient Kähler-Ricci solitons with nonnegative Ricci curvature is obtained under additional assumptions.
متن کاملJa n 20 09 Ricci Solitons and Einstein - Scalar Field Theory
B List has recently studied a geometric flow whose fixed points correspond to static Ricci flat spacetimes. It is now known that this flow is in fact Ricci flow modulo pullback by a certain diffeomorphism. We use this observation to associate to each static Ricci flat spacetime a local Ricci soliton in one higher dimension. As well, solutions of Euclidean-signature Einstein gravity coupled to a...
متن کاملA ug 2 00 8 Ricci Solitons and Einstein - Scalar Field Theory
B List has recently studied a geometric flow whose fixed points correspond to static Ricci flat spacetimes. It is now known that this flow is in fact Ricci flow modulo pullback by a certain diffeomorphism. We use this observation to associate to each static Ricci flat spacetime a local Ricci soliton in one higher dimension. As well, solutions of Euclidean-signature Einstein gravity coupled to a...
متن کاملOn three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کاملA Characterization of Noncompact Koiso-type Solitons
We construct complete gradient Kähler–Ricci solitons of various types on the total spaces of certain holomorphic line bundles over compact Kähler–Einstein manifolds with positive scalar curvature. Those are noncompact analogues of the compact examples found by Koiso [On rotationally symmetric Hamilton’s equations for Kähler–Einstein metrics, in Recent Topics in Differential and Analytic Geometr...
متن کامل