The betaine/GABA transporter and betaine: roles in brain, kidney, and liver
نویسندگان
چکیده
The physiological roles of the betaine/GABA transporter (BGT1; slc6a12) are still being debated. BGT1 is a member of the solute carrier family 6 (the neurotransmitter, sodium symporter transporter family) and mediates cellular uptake of betaine and GABA in a sodium- and chloride-dependent process. Most of the studies of BGT1 concern its function and regulation in the kidney medulla where its role is best understood. The conditions here are hostile due to hyperosmolarity and significant concentrations of NH4Cl and urea. To withstand the hyperosmolarity, cells trigger osmotic adaptation, involving concentration of a transcriptional factor TonEBP/NFAT5 in the nucleus, and accumulate betaine and other osmolytes. Data from renal cells in culture, primarily MDCK, revealed that transcriptional regulation of BGT1 by TonEBP/NFAT5 is relatively slow. To allow more acute control of the abundance of BGT1 protein in the plasma membrane, there is also post-translation regulation of BGT1 protein trafficking which is dependent on intracellular calcium and ATP. Further, betaine may be important in liver metabolism as a methyl donor. In fact, in the mouse the liver is the organ with the highest content of BGT1. Hepatocytes express high levels of both BGT1 and the only enzyme that can metabolize betaine, namely betaine:homocysteine -S-methyltransferase (BHMT1). The BHMT1 enzyme removes a methyl group from betaine and transfers it to homocysteine, a potential risk factor for cardiovascular disease. Finally, BGT1 has been proposed to play a role in controlling brain excitability and thereby represents a target for anticonvulsive drug development. The latter hypothesis is controversial due to very low expression levels of BGT1 relative to other GABA transporters in brain, and also the primary location of BGT1 at the surface of the brain in the leptomeninges. These issues are discussed in detail.
منابع مشابه
The betaine-GABA transporter (BGT1, slc6a12) is predominantly expressed in the liver and at lower levels in the kidneys and at the brain surface.
The Na(+)- and Cl(-)-dependent GABA-betaine transporter (BGT1) has received attention mostly as a protector against osmolarity changes in the kidney and as a potential controller of the neurotransmitter GABA in the brain. Nevertheless, the cellular distribution of BGT1, and its physiological importance, is not fully understood. Here we have quantified mRNA levels using TaqMan real-time PCR, pro...
متن کاملBetaine transport in kidney and liver: use of betaine in liver injury.
Betaine, also known as trimethylglycine, is an important human nutrient obtained from a variety of foods and also can be synthesized from choline. Betaine is much more abundant in kidney and liver compared to other mammalian organs. The principal role of betaine in the kidney is osmoprotection in cells of the medulla and it enters these cells via the betaine/γ-aminobutyric acid (GABA) transport...
متن کاملHigh homocysteine induces betaine depletion
Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasm...
متن کاملHepatoprotective effects of betaine on liver damages followed by myocardial infarction
Myocardial infarction is commonly considered as a leading cause of cardiovascular disease taking the lives of seven million people annually. Liver dysfunction is associated with cardiac diseases. The profile of abnormal liver functions in heart failure is not clearly defined. This study was designed to investigate the protective effects of betaine on liver injury after myocardial infarction ind...
متن کاملPlasma dependent and independent accumulation of betaine in male and female rat tissues.
Tissue betaine is an intracellular osmolyte that also provides a store of labile methyl groups. Despite these important biological roles, there are few data regarding tissue betaine content. We measured the betaine concentration of plasma and various tissues (brain, heart, lungs, liver, kidney, spleen, intestine, reproductive tissues, skeletal muscle and skin) in male and female rats and assess...
متن کامل