Anharmonic effects on a phonon-number measurement of a quantum-mesoscopic-mechanical oscillator
نویسندگان
چکیده
We generalize a proposal for detecting single-phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon-number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the read-out oscillator.
منابع مشابه
Quantum transport and dynamics of phonons in mesoscopic systems
Recent advances in nanotechnology have shrunk the size of mesoscopic structures. This allows us to investigate the quantum mechanics of mechanical oscillators. In this thesis we focus on two aspects. In Part I, an individual discrete mode structure of an oscillator and its effect to thermal conductance have been thoroughly examined: Specifically, we investigated the reduction in the thermal con...
متن کاملQuantum versus Semiclassical Description of Selftrapping: Anharmonic Effects
Selftrapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum mechanical analysis of a two-site system, where the oscillator is described by a tunab...
متن کاملQuantum anharmonic oscillator and its statistical properties in the first quantization scheme
A family of quantum anharmonic oscillators is studied in any finite spatial dimension in the scheme of first quantization and the investigation of their eigenenergies is presented. The statistical properties of the calculated eigenenergies are compared with the theoretical predictions inferred from the Random Matrix theory. Conclusions are derived. 1 Motivation The quantum harmonic oscillator p...
متن کاملQuantum measurement of phonon shot noise.
We provide a full quantum mechanical analysis of a weak energy measurement of a driven mechanical resonator. We demonstrate that measurements too weak to resolve individual mechanical Fock states can nonetheless be used to detect the nonclassical energy fluctuations of the driven mechanical resonator, i.e., "phonon shot noise". We also show that the third moment of the oscillator's energy fluct...
متن کامل2 00 6 Quantum Dots : Coulomb Blockade , Mesoscopic Fluctuations , and Qubit Decoherence
Quantum Dots: Coulomb Blockade, Mesoscopic Fluctuations, and Qubit Decoherence The continuous minituarization of integrated circuits is going to affect the underlying physics of the future computers. This new physics first came into play as the effect of Coulomb blockade in electron transport through small conducting islands. Then, as the size of the island L continued to shrink further, the qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004