Phosphatase Wip1 controls antigen-independent B-cell development in a p53-dependent manner.

نویسندگان

  • Weiwei Yi
  • Xuelian Hu
  • Zhiyang Chen
  • Leiming Liu
  • Yuan Tian
  • Hui Chen
  • Yu-Sheng Cong
  • Fan Yang
  • Lianfeng Zhang
  • Karl Lenhard Rudolph
  • Zhixin Zhang
  • Yong Zhao
  • Zhenyu Ju
چکیده

Wild-type p53-induced phosphatase 1 (Wip1), a phosphatase previously considered as an oncogene, has been implicated in the regulation of thymus homeostasis and neutrophil maturation. However, the role of Wip1 in B-cell development is unknown. We show that Wip1-deficient mice exhibit a significant reduction of B-cell numbers in the bone marrow, peripheral blood, and spleen. A reciprocal transplantation approach revealed a cell-intrinsic defect in early B-cell precursors caused by Wip1 deficiency. Further experiments revealed that Wip1 deficiency led to a sustained activation of p53 in B cells, which led to increased level of apoptosis in the pre-B-cell compartment. Notably, the impairment of B-cell development in Wip1-deficient mice was completely rescued by genetic ablation of p53, but not p21. Therefore, loss of Wip1 phosphatase induces a p53-dependent, but p21-independent, mechanism that impairs B-cell development by enhancing apoptosis in early B-cell precursors. Moreover, Wip1 deficiency exacerbated a decline in B-cell development caused by aging as evidenced in mice with aging and mouse models with serial competitive bone marrow transplantation, respectively. Our present data indicate that Wip1 plays a critical role in maintaining antigen-independent B-cell development in the bone marrow and preventing an aging-related decline in B-cell development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner.

Exposure of mammalian cells to ionizing radiation (IR) induces a complex array of cellular responses including cell cycle arrest and/or apoptosis. IR-induced G1 arrest has been shown to depend on the presence of the tumor suppressor p53, which acts as a transcriptional activator of several genes. p53 also plays a role in the induction of apoptosis in response to DNA damage, and this pathway can...

متن کامل

Phosphatase Wip1 negatively regulates neutrophil development through p38 MAPK-STAT1.

Neutrophils are critically involved in host defense and tissue damage. Intrinsic molecular mechanisms controlling neutrophil differentiation and activities are poorly defined. Herein we found that p53-induced phosphatase 1(Wip1) is preferentially expressed in neutrophils among immune cells. The Wip1 expression is gradually up-regulated during the differentiation of myeloid precursors into matur...

متن کامل

Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase

The ataxia telangiectasia mutated (ATM) kinase is a key tumor suppressor that regulates numerous cell cycle checkpoints as well as apoptosis. Here, we report that ATM is a critical player in the regulation of apoptosis and lymphomagenesis in the presence of c-myc. In turn, deletion of the inhibitory ATM phosphatase, Wip1, results in ATM up-regulation and suppression of Emicro-myc-induced B cell...

متن کامل

DNA damage-induced regulatory interplay between DAXX, p53, ATM kinase and Wip1 phosphatase

Death domain-associated protein 6 (DAXX) is a histone chaperone, putative regulator of apoptosis and transcription, and candidate modulator of p53-mediated gene expression following DNA damage. DAXX becomes phosphorylated upon DNA damage, however regulation of this modification, and its relationship to p53 remain unclear. Here we show that in human cells exposed to ionizing radiation or genotox...

متن کامل

Wip1 phosphatase-deficient mice exhibit defective T cell maturation due to sustained p53 activation.

The PP2C phosphatase Wip1 dephosphorylates p38 and blocks UV-induced p53 activation in cultured human cells. Although the level of TCR-induced p38 MAPK activity is initially comparable between Wip1-/- and wild-type thymocytes, phosphatase-deficient cells failed to down-regulate p38 MAPK activity after 6 h. Analysis of young Wip1-deficient mice showed that they had fewer splenic T cells. Their t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 126 5  شماره 

صفحات  -

تاریخ انتشار 2015