Coding true arithmetic in the Medvedev and Muchnik degrees

نویسنده

  • Paul Shafer
چکیده

We prove that the first-order theory of the Medvedev degrees, the first-order theory of the Muchnik degrees, and the third-order theory of true arithmetic are pairwise recursively isomorphic (obtained independently by Lewis, Nies, and Sorbi [7]). We then restrict our attention to the degrees of closed sets and prove that the following theories are pairwise recursively isomorphic: the first-order theory of the closed Medvedev degrees, the first-order theory of the compact Medvedev degrees, the first-order theory of the closed Muchnik degrees, the first-order theory of the compact Muchnik degrees, and the second-order theory of true arithmetic. Our coding methods also prove that neither the closed Medvedev degrees nor the compact Medvedev degrees are elementarily equivalent to either the closed Muchnik degrees or the compact Muchnik degrees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coding true arithmetic in the Medvedev degrees of Π10 classes

Let Es denote the lattice of Medvedev degrees of non-empty Π1 subsets of 2, and let Ew denote the lattice of Muchnik degrees of non-empty Π1 subsets of 2. We prove that the first-order theory of Es as a partial order is recursively isomorphic to the first-order theory of true arithmetic. Our coding of arithmetic in Es also shows that the Σ3-theory of Es as a lattice and the Σ4-theory of Es as a...

متن کامل

Medvedev and Muchnik Degrees of Nonempty Π 01 Subsets of 2 ω

This is a report for my presentation at the upcoming meeting on Berechenbarkeitstheorie (“Computability Theory”), Oberwolfach, January 21–27, 2001. We use 2 to denote the space of infinite sequences of 0’s and 1’s. For X, Y ∈ 2, X ≤T Y means that X is Turing reducible to Y . For P,Q ⊆ 2 we say that P is Muchnik reducible to Q, abbreviated P ≤w Q, if for all Y ∈ Q there exists X ∈ P such that X ...

متن کامل

The first order theories of the Medvedev and the Muchnik lattice

We show that the first order theories of the Medevdev lattice and the Muchnik lattice are both computably isomorphic to the third order theory of true arithmetic.

متن کامل

Inside the Muchnik Degrees II: The Degree Structures induced by the Arithmetical Hierarchy of Countably Continuous Functions

It is known that infinitely many Medvedev degrees exist inside the Muchnik degree of any nontrivial Π1 subset of Cantor space. We shed light on the fine structures inside these Muchnik degrees related to learnability and piecewise computability. As for nonempty Π1 subsets of Cantor space, we show the existence of a finite-∆2-piecewise degree containing infinitely many finite-(Π 0 1)2-piecewise ...

متن کامل

Embeddings into the Medvedev and Muchnik lattices of Π1 classes

Let Pw and PM be the countable distributive lattices of Muchnik and Medvedev degrees of non-empty Π1 subsets of 2 , under Muchnik and Medvedev reducibility, respectively. We show that all countable distributive lattices are lattice-embeddable below any non-zero element of Pw. We show that many countable distributive lattices are lattice-embeddable below any non-zero element of PM .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2011