Exploiting the Separable Structure of SLAM
نویسندگان
چکیده
In this paper we point out an overlooked structure of SLAM that distinguishes it from a generic nonlinear least squares problem. The measurement function in most common forms of SLAM is linear with respect to robot and features’ positions. Therefore, given an estimate for robot orientation, the conditionally optimal estimate for the rest of state variables can be easily obtained by solving a sparse linear-Gaussian estimation problem. We propose an algorithm to exploit this intrinsic property of SLAM by stripping the problem down to its nonlinear core, while maintaining its natural sparsity. Our algorithm can be used together with any Newton-based iterative solver and is applicable to 2D/3D pose-graph and feature-based problems. Our results suggest that iteratively solving the nonlinear core of SLAM leads to a fast and reliable convergence as compared to the state-of-the-art back-ends.
منابع مشابه
New Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملSLAM for Flight through Urban Environments using Dimensionality Reduction
Robotic mapping is an enabling technology for the navigation of autonomous vehicles. The problem of estimating both a vehicle’s state and a map of its environment is referred to as Simultaneous Localization and Mapping (SLAM). This paper presents a SLAM framework suitable of a Micro Air Vehicle (MAV) equipped only with a monocular camera. Structure from Motion (SFM) is employed to infer three-d...
متن کاملSLAM based Quasi Dense Reconstruction For Minimally Invasive Surgery Scenes
Recovering surgical scene structure in laparoscope surgery is crucial step for surgical guidance and augmented reality applications. In this paper, a quasi dense reconstruction algorithm of surgical scene is proposed. This is based on a state-of-the-art SLAM system, and is exploiting the initial exploration phase that is typically performed by the surgeon at the beginning of the surgery. We sho...
متن کاملTradeoffs in SLAM with Sparse Information Filters
Designing filters exploiting the sparse information matrix for efficiently solving the simultaneous localization and mapping (SLAM) problem has attracted significant attention during the recent past. The main contribution of this paper is a review of the various sparse information filters proposed in the literature to date, in particular, the compromises used to achieve sparseness. Two of the m...
متن کاملEffects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کامل