A Note on Jordan Left ∗-Centralizers in Rings with Involution

نویسندگان

  • Abdul Nadim Khan
  • Mohammad Shadab Khan
چکیده

Let R be a ring with involution. An additive mapping T : R → R is called a left ∗-centralizer (resp. Jordan left ∗-centralizer) if T (xy) = T (x)y∗ (resp. T (x2) = T (x)x∗) holds for all x, y ∈ R, and a reverse left ∗-centralizer if T (xy) = T (y)x∗ holds for all x, y ∈ R. The purpose of this paper is to solve some functional equations involving Jordan left ∗-centralizers on some appropriate subsets of prime and semiprime rings with involution. In particular, we prove the following result: Let R be a 2-torsion free noncommutative semiprime ring with involution, I be a ∗-closed ideal of R, and let S, T : R→ R be Jordan left ∗-centralizers satisfying the relation [S(x), T (x)]S(x)−S(x)[S(x), T (x)] = 0 for all x ∈ I. Then [S(x), T (x)] = 0 for all x ∈ I. Moreover, if R is a prime ring and S 6= 0 16 Abdul Nadim Khan, Mohammad Shadab Khan and Shakir Ali (T 6= 0), then there exists λ ∈ C such that T = λS (S = λT ). Mathematics Subject Classification: 16N60, 16W10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On centralizers of prime rings with involution

‎Let $R$ be a ring with involution $*$‎. ‎An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$‎. ‎The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.

متن کامل

On Jordan left derivations and generalized Jordan left derivations of matrix rings

Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...

متن کامل

Lahcen Oukhtite GENERALIZED JORDAN LEFT DERIVATIONS IN RINGS WITH INVOLUTION

In the present paper we study generalized left derivations on Lie ideals of rings with involution. Some of our results extend other ones proven previously just for the action of generalized left derivations on the whole ring. Furthermore, we prove that every generalized Jordan left derivation on a 2-torsion free ∗-prime ring with involution is a generalized left derivation.

متن کامل

Finite groups have even more centralizers

For a finite group $G$‎, ‎let $Cent(G)$ denote the set of centralizers of single elements of $G$‎. ‎In this note we prove that if $|G|leq frac{3}{2}|Cent(G)|$ and $G$ is 2-nilpotent‎, ‎then $Gcong S_3‎, ‎D_{10}$ or $S_3times S_3$‎. ‎This result gives a partial and positive answer to a conjecture raised by A‎. ‎R‎. ‎Ashrafi [On finite groups with a given number of centralizers‎, ‎Algebra‎ ‎Collo...

متن کامل

On Identities with Additive Mappings in Rings

begin{abstract} If $F,D:Rto R$ are additive mappings which satisfy $F(x^{n}y^{n})=x^nF(y^{n})+y^nD(x^{n})$ for all $x,yin R$. Then, $F$ is a generalized left derivation with associated Jordan left derivation $D$ on $R$. Similar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems. end{abstract}

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015