Orie 6334 Spectral Graph Theory Lecture 21

نویسندگان

  • David P. Williamson
  • Seung Won
چکیده

Just like matrix Chernoff bounds were a generalization of scalar Chernoff bounds, the multiplicative weights algorithm can be generalized to matrices. Recall that in the setup for the multiplicative weight update algorithm, we had a sequence of time steps t = 1, . . . , T ; in each time step t, we made a decision i ∈ {1...N} and got a value vt(i) ∈ [0, 1]. After we made a decision in time step t, we got to see all the values In matrix multiplicative weights, we make a decision u ∈ Rn, ||u|| = 1 and get a value uMtu where 0 Mt I, Mt ∈ Rn×n, so that uMtu ∈ [0, 1]. As with multiplicative weights, we make a randomized decision for the vector u based on some weights. We now maintain a weight matrix Wt ∈ Rn×n, Wt 0. Let Pt = Wt tr(Wk) so that tr(Pt) = 1 and Pt 0. If λit are eigenvalues of Pt, and xit are the corresponding orthonormal eigenectors, then Pt = ∑n i=1 λitxitx T it, λit ≥ 0, ∑n i=1 λit = 1; that is, Pt is a discrete distribution over the vectors xit, and we will choose the vector xit with probability λit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orie 6334 Spectral Graph Theory Lecture 8

We also saw that λ2 = minR(y). The issue is that we may have vol(St) > vol(V −St). To fix this, we will modify y so that vol(supp(y)) ≤ m (recall that vol(V ) = 2m). The idea is to pick c such that the two sets {i : y(i) < c} and {i : y(i) > c} both have volume at most m, then find St for both of them and take the best one. This lecture is derived from Lau’s 2012 notes, Week 2, http://appsrv.cs...

متن کامل

ORIE 6334 Spectral Graph Theory December 1 , 2016 Lecture 27 Remix

The proof of the theorem uses a SDP relaxation in terms of vectors vi ∈ Rn for all i ∈ V . Define distances to be d(i, j) ≡ ‖vi − vj‖ and balls to be B(i, r) ≡ {j ∈ V | d(i, j) ≤ r}. We first showed that if there exists a vertex i ∈ V such that |B(i, 1/4)| ≥ n/4, then we can find a cut of sparsity ≤ O(1) ·OPT . If there does not exist such a vertex in V , then we can find U ⊆ V with |U | ≥ n/2 ...

متن کامل

Orie 6334 Spectral Graph Theory 1 Approximate Potentials from Approximate Flow

E[E(fk)− E(f∗)] ≤ ( 1− 1 τ )k (stT (G)− 1)E(f∗) ≤ e− ln(stT (G)τ/ (stT (G)− 1)E(f∗) ≤ τ E(f∗), where the inequality 1− x ≤ e−x is used in the second step. In the following, we will see how to bound the error between the obtained approximate potentials pk and the desired potentials p∗ = L + Gb based on the above bound on energy. Denote ‖x‖L = √ xLGx. We want to show that ‖pk − p∗‖L ≤ ‖p∗‖L, This...

متن کامل

ORIE 6334 Spectral Graph

We can give a sketch of the algorithm below. Recall that, given a tree T and a flow f , the tree-defined potentials are p(r) = 0 for a selected root vertex r and p(i) = ∑ (k,l)∈P (i,r) r(k, l)f(k, l), where P (i, r) is the directed (i, r) path in T . Recall also that any electrical flow obeys both the Kirchoff Current Law (KCL, or flow conservation) and the Kirchoff Potential Law (KPL), which s...

متن کامل

ORIE 6334 Spectral Graph Theory

Theorem 1 (Arora, Rao, Vazirani, 2004) There is an O( √ log n)-approximation algorithm for sparsest cut. The proof of the theorem uses a SDP relaxation in terms of vectors vi ∈ Rn for all i ∈ V . Define distances to be d(i, j) ≡ ‖vi − vj‖ and balls to be B(i, r) ≡ {j ∈ V | d(i, j) ≤ r}. We first showed that if there exists a vertex i ∈ V such that |B(i, 1/4)| ≥ n/4, then we can find a cut of sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016