Chromosomal Context Affects the Molecular Evolution of Sex-linked Genes and Their Autosomal Counterparts in Turtles and Other Vertebrates

نویسنده

  • Melissa Wilson Sayres
چکیده

Sex chromosomes evolve differently from autosomes because natural selection acts distinctly on them given their reduced recombination and smaller population size. Various studies of sex-linked genes compared with different autosomal genes within species support these predictions. Here, we take a novel alternative approach by comparing the rate of evolution between subsets of genes that are sex-linked in selected reptiles/vertebrates and the same genes located in autosomes in other amniotes. We report for the first time the faster evolution of Z-linked genes in a turtle (the Chinese softshell turtle Pelodiscus sinensis) relative to autosomal orthologs in other taxa, including turtles with temperature-dependent sex determination (TSD). This faster rate was absent in its close relative, the spiny softshell turtle (Apalone spinifera), thus revealing important lineage effects, and was only surpassed by mammalian-X linked genes. In contrast, we found slower evolution of X-linked genes in the musk turtle Staurotypus triporcatus (XX/XY) and homologous Z-linked chicken genes. TSD lineages displayed overall faster sequence evolution than taxa with genotypic sex determination (GSD), ruling out global effects of GSD on molecular evolution beyond those by sex-linkage. Notably, results revealed a putative selective sweep around two turtle genes involved in vertebrate gonadogenesis (Pelodiscus-Z-linked Nf2 and Chrysemys-autosomal Tspan7). Our observations reveal important evolutionary changes at the gene level mediated by chromosomal context in turtles despite their low overall evolutionary rate and illuminate sex chromosome evolution by empirically testing expectations from theoretical models. Genome-wide analyses are warranted to test the generality and prevalence of the observed patterns. Subject area: Bioinformatics and computational genetics, Molecular adaptation and selection

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromosomal Context Affects the Molecular Evolution of Sex-linked Genes and Their Autosomal Counterparts in Turtles and Other Vertebrates.

Sex chromosomes evolve differently from autosomes because natural selection acts distinctly on them given their reduced recombination and smaller population size. Various studies of sex-linked genes compared with different autosomal genes within species support these predictions. Here, we take a novel alternative approach by comparing the rate of evolution between subsets of genes that are sex-...

متن کامل

Inm-7: Genetic Etiologies of Premature Ovarian Failure

Premature Ovarian Failure (POF) defined as functional stop of ovaries before the age of 40. It is a common cause of infertility in women that characterized by primary or secondary amenorrhea, high gonadotropin levels and estrogen level declining in patients. Factors that reduce follicle or defect in the follicle growth stimulating mechanism defined as numerous complication factors that they can...

متن کامل

پزشک و مشاور ژنتیک

Physicians are families' best counsellers, and genetic counseling is one of the most important and delicate aspects of medicine. Genetic disorders are the third most common problems of mankind after infectious diseases and malnutrition. 10% of neonatal and 25% of pediatric mortalities are some how related to congenital and genetic disturbances. Genetic disorders are categorized in four major gr...

متن کامل

I-41: Genetic Causes of Premature Ovarian Failure (POF) and early Menopause

Premature ovarian failure (POF) is a heterogeneous disorder, defined as menopause under age 40 years. The prevalence is 1%; POF before age 30 years is much less common. Chromosomal causes have long been recognized - visible deletions of the X chromosome, 45,X/46,XX mosaicism, and autosomal rearrangements (balanced translocations). Toxins or iatrogenic causes (e.g., chemotherapeutic agents) are ...

متن کامل

Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes.

Turtle karyotypes are highly conserved compared to other vertebrates; yet, variation in diploid number (2n = 26-68) reflects profound genomic reorganization, which correlates with evolutionary turnovers in sex determination. We evaluate the published literature and newly collected comparative cytogenetic data (G- and C-banding, 18S-NOR, and telomere-FISH mapping) from 13 species spanning 2n = 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017