Increased Monomerization of Mutant HSPB1 Leads to Protein Hyperactivity in Charcot-Marie-Tooth Neuropathy*
نویسندگان
چکیده
Small heat shock proteins are molecular chaperones capable of maintaining denatured proteins in a folding-competent state. We have previously shown that missense mutations in the small heat shock protein HSPB1 (HSP27) cause distal hereditary motor neuropathy and axonal Charcot-Marie-Tooth disease. Here we investigated the biochemical consequences of HSPB1 mutations that are known to cause peripheral neuropathy. In contrast to other chaperonopathies, our results revealed that particular HSPB1 mutations presented higher chaperone activity compared with wild type. Hyperactivation of HSPB1 was accompanied by a change from its wild-type dimeric state to a monomer without dissociation of the 24-meric state. Purification of protein complexes from wild-type and HSPB1 mutants showed that the hyperactive isoforms also presented enhanced binding to client proteins. Furthermore, we show that the wild-type HSPB1 protein undergoes monomerization during heat-shock activation, strongly suggesting that the monomer is the active form of the HSPB1 protein.
منابع مشابه
Small heat-shock protein HSPB1 mutants stabilize microtubules in Charcot-Marie-Tooth neuropathy.
Mutations in the small heat shock protein HSPB1 (HSP27) are causative for Charcot-Marie-Tooth (CMT) neuropathy. We previously showed that a subset of these mutations displays higher chaperone activity and enhanced affinity to client proteins. We hypothesized that this excessive binding property might cause the HSPB1 mutant proteins to disturb the function of proteins essential for the maintenan...
متن کاملDisruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth disease-linked mutations in NFL and HSPB1.
Mutations in neurofilament light (NFL) subunit and small heat-shock protein B1 (HSPB1) cause autosomal-dominant axonal Charcot-Marie-Tooth disease type 2E (CMT2E) and type 2F (CMT2F). Previous studies have shown that CMT mutations in NFL and HSPB1 disrupt NF assembly and cause aggregation of NFL protein. In this study, we investigate the role of aggregation of NFL protein in the neurotoxicity o...
متن کاملA novel p.T139M mutation in HSPB1 highlighting the phenotypic spectrum in a family
INTRODUCTION Mutations in the HSPB1 gene encoding the small heat shock protein B1 are associated with an autosomal dominant, axonal form of Charcot-Marie-Tooth disease 2F (CMT2F) and distal hereditary motor neuropathy. Recently, distal myopathy had been described in a patient carrying HSPB1 mutation adding to the complexity of phenotypes resulting from HSPB1 mutations. METHODS Five patients i...
متن کاملCharcot–Marie–Tooth disease: Genetics, epidemiology and complications
Background and aims: Charcot Marie Tooth disease (CMT) is the most prevalent hereditary neuropathy and its frequency is 1 in 2500. CMT is a heterogeneous disease and has different clinical symptoms. The prevalence of CMT and involved genes differ in different countries. CMT patients experience considerable sleep problems and a higher risk of decreased quality of life. In this w...
متن کاملMutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease
The small heat shock protein HSPB1 (Hsp27) is an ubiquitously expressed molecular chaperone able to regulate various cellular functions like actin dynamics, oxidative stress regulation and anti-apoptosis. So far disease causing mutations in HSPB1 have been associated with neurodegenerative diseases such as distal hereditary motor neuropathy, Charcot-Marie-Tooth disease and amyotrophic lateral s...
متن کامل