Detection of high-affinity and sliding clamp modes for MSH2-MSH6 by single-molecule unzipping force analysis.
نویسندگان
چکیده
Mismatch repair (MMR) is initiated by MutS family proteins (MSH) that recognize DNA mismatches and recruit downstream repair factors. We used a single-molecule DNA-unzipping assay to probe interactions between S. cerevisiae MSH2-MSH6 and a variety of DNA mismatch substrates. This work revealed a high-specificity binding state of MSH proteins for mismatch DNA that was not observed in bulk assays and allowed us to measure the affinity of MSH2-MSH6 for mismatch DNA as well as its footprint on DNA surrounding the mismatch site. Unzipping analysis with mismatch substrates containing an end blocked by lac repressor allowed us to identify MSH proteins present on DNA between the mismatch and the block, presumably in an ATP-dependent sliding clamp mode. These studies provide a high-resolution approach to study MSH interactions with DNA mismatches and supply evidence to support and refute different models proposed for initiation steps in MMR.
منابع مشابه
Engineered disulfide-forming amino acid substitutions interfere with a conformational change in the mismatch recognition complex Msh2-Msh6 required for mismatch repair.
ATP binding causes the mispair-bound Msh2-Msh6 mismatch recognition complex to slide along the DNA away from the mismatch, and ATP is required for the mispair-dependent interaction between Msh2-Msh6 and Mlh1-Pms1. It has been inferred from these observations that ATP induces conformational changes in Msh2-Msh6; however, the nature of these conformational changes and their requirement in mismatc...
متن کاملBiochemical basis for dominant mutations in the Saccharomyces cerevisiae MSH6 gene.
Here, the ATP-binding, ATP hydrolysis, mispair-binding, sliding clamp formation, and Mlh1-Pms1 complex interaction properties of dominant mutant Msh2-Msh6 complexes have been characterized. The results demonstrate two mechanisms for dominance. In one, seen with the Msh6-S1036P and Msh6-G1067D mutant complexes, the mutant complex binds mispaired bases, is defective for ATP-induced sliding clamp ...
متن کاملBinding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3
DNA-mismatch repair removes mismatches from the newly replicated DNA strand. In humans, mutations in the mismatch repair genes hMSH2, hMLH1, hPMS1 and hPMS2 result in hereditary non-polyposis colorectal cancer (HNPCC) [1-8]. The hMSH2 (MSH for MutS homologue) protein forms a complex with a 160 kDa protein, and this heterodimer, hMutSalpha, has high affinity for a G/T mismatch [9,10]. Cell lines...
متن کاملContribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2-Msh6 mismatch repair protein.
Previous analyses of both Thermus aquaticus MutS homodimer and Saccharomyces cerevisiae Msh2-Msh6 heterodimer have revealed that the subunits in these protein complexes bind and hydrolyze ATP asymmetrically, emulating their asymmetric DNA binding properties. In the MutS homodimer, one subunit (S1) binds ATP with high affinity and hydrolyzes it rapidly, while the other subunit (S2) binds ATP wit...
متن کاملModulation of the DNA-binding activity of Saccharomyces cerevisiae MSH2–MSH6 complex by the high-mobility group protein NHP6A, in vitro
DNA mismatch repair corrects mispaired bases and small insertions/deletions in DNA. In eukaryotes, the mismatch repair complex MSH2-MSH6 binds to mispairs with only slightly higher affinity than to fully paired DNA in vitro. Recently, the high-mobility group box1 protein, (HMGB1), has been shown to stimulate the mismatch repair reaction in vitro. In yeast, the closest homologs of HMGB1 are NHP6...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cell
دوره 20 5 شماره
صفحات -
تاریخ انتشار 2005