High-Pressure Design of Advanced BN-Based Materials.
نویسندگان
چکیده
The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B13N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.
منابع مشابه
On the Stability of c-BN-Reinforcing Particles in Ceramic Matrix Materials
Cubic boron nitride (c-BN) composites produced at high pressures and temperatures are widely used as cutting tool materials. The advent of new, effective pressure-assisted densification methods, such as spark plasma sintering (SPS), has stimulated attempts to produce these composites at low pressures. Under low-pressure conditions, however, transformation of c-BN to the soft hexagonal BN (h-BN)...
متن کاملUltralight boron nitride aerogels via template-assisted chemical vapor deposition
Boron nitride (BN) aerogels are porous materials with a continuous three-dimensional network structure. They are attracting increasing attention for a wide range of applications. Here, we report the template-assisted synthesis of BN aerogels by catalyst-free, low-pressure chemical vapor deposition on graphene-carbon nanotube composite aerogels using borazine as the B and N sources with a relati...
متن کاملTransformations of Cold-Compressed Multiwalled Boron Nitride Nanotubes Probed by Infrared Spectroscopy
Multiwalled boron nitride nanotubes (BNNTs) were compressed at room temperature in diamond anvil cells up to 35 GPa, followed by decompression. For the first time, in situ infrared absorption spectroscopy was used to monitor BNNT structural transformations. These BNNTs were found to undergo pressure-induced transformations from a hexagonal to a more closely packed wurtzite structure at 11 GPa, ...
متن کاملShear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure.
Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure-temperature conditions, which is irrelevant to industrial applications. Here, the phase transitio...
متن کاملHigh Brilliance and High Pressure: A New Diamond Anvil Cell Facility at the Advanced Photon Source
High energy and high brilliance make the Advanced Photon Source (APS) an ideal tool for high pressure studies. In this paper, we describe the diamond anvil cell (DAC) facility that is being developed for the APS by the GeoSoilEnviroCARS group of the Consortium for Advanced Radiation Sources (CARS). The DAC program aims at studying properties of materials across the entire pressure-temperature s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 21 10 شماره
صفحات -
تاریخ انتشار 2016