SOS-Convex Lyapunov Functions with Applications to Nonlinear Switched Systems
نویسندگان
چکیده
We introduce the concept of sos-convex Lyapunov functions for stability analysis of discrete time switched systems. These are polynomial Lyapunov functions that have an algebraic certificate of convexity, and can be efficiently found by semidefinite programming. We show that sos-convex Lyapunov functions are universal (i.e., necessary and sufficient) for stability analysis of switched linear systems. On the other hand, we show via an explicit example that the minimum degree of an sos-convex Lyapunov function can be arbitrarily higher than a (non-convex) polynomial Lyapunov function, whose induced Minkowski functional is also a valid (non-polynomial) convex Lyapunov function. In the second part of the paper, we show that if the switched system is defined as the convex hull of a finite number of nonlinear functions, then existence of a non-convex common Lyapunov function is not a sufficient condition for switched stability, but existence of a convex common Lyapunov function is. This shows the usefulness of the computational machinery of sos-convex Lyapunov functions which can be applied either directly to the switched nonlinear system, or to its linearization, to provide proof of local switched stability for the convex hull of the nonlinear system. An example is given where no polynomial of degree less than 14 can provide an estimate to the region of attraction under arbitrary switching.
منابع مشابه
SOS-Convex Lyapunov Functions and Stability of Difference Inclusions
We introduce the concept of sos-convex Lyapunov functions for stability analysis of both linear and nonlinear difference inclusions (also known as discrete-time switched systems). These are polynomial Lyapunov functions that have an algebraic certificate of convexity and that can be efficiently found via semidefinite programming. We prove that sos-convex Lyapunov functions are universal (i.e., ...
متن کاملDesign of Observer-based H∞ Controller for Robust Stabilization of Networked Systems Using Switched Lyapunov Functions
In this paper, H∞ controller is synthesized for networked systems subject to random transmission delays with known upper bound and different occurrence probabilities in the both of feedback (sensor to controller) and forward (controller to actuator) channels. A remote observer is employed to improve the performance of the system by computing non-delayed estimates of the sates. The closed-loop s...
متن کاملA new approach based on state conversion to stability analysis and control design of switched nonlinear cascade systems
In this paper, the problems of control and stabilization of switched nonlinear cascade systems is investigated. The so called simultaneous domination limitation (SDL) is introduced in previous works to assure the existence of a common quadratic Lyapunov function (CQLF) for switched nonlinear cascade systems. According to this idea, if all subsystems of a switched system satisfy the SDL, a CQLF ...
متن کاملPiecewise Polynomial Lyapunov Functions for a Class of Switched Nonlinear Systems
This paper proposes sufficient conditions to the regional stability analysis of switched nonlinear systems with time-varying parameters. The nonlinear sub-modes of operation are described by means of differential-algebraic equations involving the state and an auxiliary nonlinear vector. We then use piecewise polynomial Lyapunov functions and a relaxation technique that lead to a convex characte...
متن کاملLocal stabilization for a class of nonlinear impulsive switched system with non-vanishing uncertainties under a norm-bounded control input
Stability and stabilization of impulsive switched system have been considered in recent decades, but there are some issues that are not yet fully addressed such as actuator saturation. This paper deals with expo-nential stabilization for a class of nonlinear impulsive switched systems with different types of non-vanishing uncertainties under the norm-bounded control input. Due to the constraine...
متن کامل