Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis
نویسندگان
چکیده
The commensal fungus Candida albicans causes oropharyngeal candidiasis (OPC; thrush) in settings of immunodeficiency. Although disseminated, vaginal, and oral candidiasis are all caused by C. albicans species, host defense against C. albicans varies by anatomical location. T helper 1 (Th1) cells have long been implicated in defense against candidiasis, whereas the role of Th17 cells remains controversial. IL-17 mediates inflammatory pathology in a gastric model of mucosal candidiasis, but is host protective in disseminated disease. Here, we directly compared Th1 and Th17 function in a model of OPC. Th17-deficient (IL-23p19(-/-)) and IL-17R-deficient (IL-17RA(-/-)) mice experienced severe OPC, whereas Th1-deficient (IL-12p35(-/-)) mice showed low fungal burdens and no overt disease. Neutrophil recruitment was impaired in IL-23p19(-/-) and IL-17RA(-/-), but not IL-12(-/-), mice, and TCR-alphabeta cells were more important than TCR-gammadelta cells. Surprisingly, mice deficient in the Th17 cytokine IL-22 were only mildly susceptible to OPC, indicating that IL-17 rather than IL-22 is vital in defense against oral candidiasis. Gene profiling of oral mucosal tissue showed strong induction of Th17 signature genes, including CXC chemokines and beta defensin-3. Saliva from Th17-deficient, but not Th1-deficient, mice exhibited reduced candidacidal activity. Thus, the Th17 lineage, acting largely through IL-17, confers the dominant response to oral candidiasis through neutrophils and antimicrobial factors.
منابع مشابه
Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections
Oropharyngeal candidiasis (OPC) is an opportunistic fungal infection caused by Candida albicans. OPC is frequent in HIV/AIDS, implicating adaptive immunity. Mice are naive to Candida, yet IL-17 is induced within 24 h of infection, and susceptibility is strongly dependent on IL-17R signaling. We sought to identify the source of IL-17 during the early innate response to candidiasis. We show that ...
متن کاملInterleukin-17-induced protein lipocalin 2 is dispensable for immunity to oral candidiasis.
Oropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17-mediated host defense remain unc...
متن کاملOropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene
IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC). Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like d...
متن کاملIL-17A and Th17 Cells in Lung Inflammation: An Update on the Role of Th17 Cell Differentiation and IL-17R Signaling in Host Defense against Infection
The significance of Th17 cells and interleukin- (IL-)17A signaling in host defense and disease development has been demonstrated in various infection and autoimmune models. Numerous studies have indicated that Th17 cells and its signature cytokine IL-17A are critical to the airway's immune response against various bacteria and fungal infection. Cytokines such as IL-23, which are involved in Th1...
متن کاملCorrection: Role of Neutrophils in IL-17-Dependent Immunity to Mucosal Candidiasis.
Oropharyngeal candidiasis (OPC), caused by the commensal fungus Candida albicans, is an opportunistic infection associated with infancy, AIDS, and IL-17-related primary immunodeficiencies. The Th17-associated cytokines IL-23 and IL-17 are crucial for immunity to OPC, but the mechanisms by which they mediate immunity are poorly defined. IL-17RA-deficient humans and mice are strongly susceptible ...
متن کامل