Glass-reinforced hydroxyapatite composites: secondary phase proportions and densification effects on biaxial bending strength.

نویسندگان

  • M A Lopes
  • F J Monteiro
  • J D Santos
چکیده

CaO-P(2)O(5) glasses with additions of MgO and CaF(2) were used as a sintering aid of hydroxyapatite, and glass-reinforced hydroxyapatite composites obtained. Glasses promoted significant changes in the microstructure of the composites, namely with the formation of tricalcium phosphate secondary phases, beta and alpha-TCP. Quantitative phase analysis was performed by the Rietveld method using General Structure Analysis Software. Grain size measurements were carried out on SEM photomicrographs, using a planimetric procedure according to ASTM E 112-88. Flexural bending strength was determined from concentric ring-on-ring testing. Flexural bending strength (FBS) of glass-reinforced hydroxyapatite composites was found to be about twice or three times higher than that of unreinforced hydroxyapatite and tended to depend more on porosity and beta and alpha-TCP secondary phases, rather than on grain size. Traces of alpha-tricalcium phosphate significantly enhanced the strength of the composites. Using the rule of mixtures to estimate the zero porosity bending strength, the Duckworth-Knudsen model applied to the composites gave a porosity correction factor, b, with a value of 4.02. Weibull statistics were also used to analyze biaxial strength data and the level of reinforcement obtained by comparing failure probability for the composites and for the unreinforced hydroxyapatite. Lower activation energies for grain growth were observed for the composites compared to unreinforced hydroxyapatite, which should be attributed to the presence of a liquid glassy phase that promotes atomic diffusion during the sintering process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation on Mechanical Properties of Apatite-Wollastonite-Diopside Glass-Ceramics Composites

Apatite-wollastonite (A-W)-phlogopite glass-ceramic is considered to be difficult to resorb, but often, it has been incorporated in particulate form to create new bioactive composites for potential maxillofacial applications. With various compositions, the present work has attempted to prepare apatite-wollastonite (A-W)-phlogopite glass ceramic composites, by applying sintering. Here, three-poi...

متن کامل

Investigations on the Reinforcement of Mechanical Properties of Gypsum Composites Containing E-glass Woven Fabrics

Glass fiber reinforced gypsum composites are new building materials that have been used in covering interior walls. Reinforcement by means of woven fabrics as a three dimensional material is an alternative to the use of short fibers. The application of appropriate fabrics can improve mechanical properties of gypsum composites. The aim of this research article is to investigate the effect of the...

متن کامل

Pii: S0142-9612(99)00248-3

P 2 O 5 glass reinforced hydroxyapatite composite materials were prepared through a liquid-phase sintering process. Secondary phases, band a-tricalcium phosphates (b-TCP and a-TCP), were formed in the microstructure of the composites, due to the reaction between the liquid glassy phase and the hydroxyapatite matrix. The dynamic Young's modulus (E) and shear modulus (G) of these composites were ...

متن کامل

Reaction Sintering and Mechanical Properties of Hydroxyapatite–Zirconia Composites with Calcium Fluoride Additions

The effects of calcium fluoride (CaF2) additions on the densification and mechanical properties of hydroxyapatite–zirconia composites (HA–ZrO2) were investigated. When small amount of CaF2 was added, the density of the composites was markedly enhanced. The reactions of HA with CaF2, which led to the formation of fluorapatite (FA), were attributed to the observed improvements in densification. W...

متن کامل

Effects of Fibers and Fillers on Mechanical Properties of Thermoplastic Composites

Thermoplastic copolyester elastomer (TCE) and Polyoxymethylene (POM) filled polytetrafluroethylene (PTFE) composite, reinforced with short glass fiber (SGF) and different shape microfillers such as short carbon fiber (SCF), silicon carbide (SiC) and alumina (Al2O3) were prepared by melt mixing method using twin screw extruder followed by injection moulding. Mechanical properties such as tensile...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research

دوره 48 5  شماره 

صفحات  -

تاریخ انتشار 1999