Intermittency and multifractional Brownian character of geomagnetic time series

نویسنده

  • G. Consolini
چکیده

The Earth’s magnetosphere exhibits a complex behavior in response to the solar wind conditions. This behavior, which is described in terms of mutifractional Brownian motions, could be the consequence of the occurrence of dynamical phase transitions. On the other hand, it has been shown that the dynamics of the geomagnetic signals is also characterized by intermittency at the smallest temporal scales. Here, we focus on the existence of a possible relationship in the geomagnetic time series between the multifractional Brownian motion character and the occurrence of intermittency. In detail, we investigate the multifractional nature of two long time series of the horizontal intensity of the Earth’s magnetic field as measured at L’Aquila Geomagnetic Observatory during two years (2001 and 2008), which correspond to different conditions of solar activity. We propose a possible double origin of the intermittent character of the small-scale magnetic field fluctuations, which is related to both the multifractional nature of the geomagnetic field and the intermittent character of the disturbance level. Our results suggest a more complex nature of the geomagnetic response to solar wind changes than previously thought.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward synthesis of solar wind and geomagnetic scaling exponents: a fractional Lévy motion model

Mandelbrot introduced the concept of fractals to describe the nonEuclidean shape of many aspects of the natural world. In the time series context he proposed the use of fractional Brownian motion (fBm) to model non-negligible temporal persistence, the “Joseph Effect”; and Lévy flights to quantify large discontinuities, the “Noah Effect”. In space physics, both effects are manifested in the inte...

متن کامل

Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates

Hurst exponents depict the long memory of a time series. For human-dependent phenomena, as in finance, this feature may vary in the time. It justifies modelling dynamics by multifractional Brownian motions, which are consistent with time-varying Hurst exponents. We improve the existing literature on estimating time-dependent Hurst exponents by proposing a smooth estimate obtained by variational...

متن کامل

Local times of multifractional Brownian sheets

Denote by H(t) = (H1(t), . . . ,HN (t)) a function in t ∈ R+ with values in (0, 1) . Let {B(t)} = {B(t), t ∈ R+} be an (N, d)-multifractional Brownian sheet (mfBs) with Hurst functional H(t). Under some regularity conditions on the function H(t), we prove the existence, joint continuity and the Hölder regularity of the local times of {B(t)}. We also determine the Hausdorff dimensions of the lev...

متن کامل

A process very similar to multifractional Brownian motion

Multifractional Brownian motion (mBm), denoted here by X, is one of the paradigmatic examples of a continuous Gaussian process whose pointwise Hölder exponent depends on the location. Recall that X can be obtained (see e.g. [BJR97, AT05]) by replacing the constant Hurst parameter H in the standard wavelet series representation of fractional Brownian motion (fBm) by a smooth function H(·) depend...

متن کامل

Multifractional Processes with Random Exponent

Multifractional Processes with Random Exponent (MPRE) are obtained by replacing the Hurst parameter of Fractional Brownian Motion (FBM) with a stochastic process. This process need not be independent of the white noise generating the FBM. MPREs can be conveniently represented as random wavelet series. We will use this type of representation to study their Hölder regularity and their self-simila...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013