The hausdorff voronoi diagram of polygonal objects: a divide and conquer approach
نویسندگان
چکیده
We study the Hausdorff Voronoi diagram of a set S of polygonal objects in the plane, a generalization of Voronoi diagrams based on the maximum distance of a point from a polygon, and show that it is equivalent to the Voronoi diagram of S under the Hausdorff distance function. We investigate the structural and combinatorial properties of the Hausdorff Voronoi diagram and give a divide and conquer algorithm for the construction of this diagram that improves upon previous results. As a byproduct we introduce the Hausdorff hull, a structure that relates to the Hausdorff Voronoi diagram in the same way as a convex hull relates to the ordinary Voronoi diagram. The Hausdorff Voronoi diagram finds direct application in the problem of computing the critical area of a VLSI Layout, a measure reflecting the sensitivity of a VLSI design to random manufacturing defects, described in a companion paper.
منابع مشابه
Algorithms for Complex Shapes with Certified Numerics and Topology Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space
We present a general framework for computing two-dimensional Voronoi diagrams of different site classes under various distance functions. The computation of the diagrams employs the cgal software for constructing envelopes of surfaces in 3-space, which implements a divide-and-conquer algorithm. A straightforward application of the divide-and-conquer approach for Voronoi diagrams yields highly i...
متن کاملOn the Hausdorff and Other Cluster Voronoi Diagrams
The Voronoi diagram is a fundamental geometric structure that encodes proximity information. Given a set of geometric objects, called sites, their Voronoi diagram is a subdivision of the underlying space into maximal regions, such that all points within one region have the same nearest site. Problems in diverse application domains (such as VLSI CAD, robotics, facility location, etc.) demand var...
متن کاملAn improved algorithm for Hausdorff Voronoi diagram for non-crossing sets∗†‡
We present an improved algorithm for building a Hausdorff Voronoi diagram (HVD) for non-crossing objects. Our algorithm runs in O(n log4 n) time, where n is the total number of points defining the objects in the plane. This improves on previous results and solves an open problem posed by Papadopoulou and Lee [15]. Moreover, our algorithm is parallelizable. In cluster computing architectures (su...
متن کاملComputing the Hausdorff Distance between Curved Objects
The Hausdorff distance between two sets of curves is a measure for the similarity of these objects and therefore an interesting feature in shape recognition. If the curves are algebraic computing the Hausdorff distance involves computing the intersection points of the Voronoi edges of the one set with the curves in the other. Since computing the Voronoi diagram of curves is quite difficult we c...
متن کاملA Minimalist’s Implementation of the 3-d Divide-and-Conquer Convex Hull Algorithm
We give a simple interpretation and a simple implementation of the classical divide-andconquer algorithm for computing 3-d convex hulls (and in particular, 2-d Delaunay triangulations and Voronoi diagrams). The entire C++ code is under 100 lines long, requires no special data structures, and uses only 6n pointers for space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Comput. Geometry Appl.
دوره 14 شماره
صفحات -
تاریخ انتشار 2004