Explicit construction of operator scaling Gaussian random fields

نویسندگان

  • M. Clausel
  • B. Vedel
چکیده

We propose an explicit way to generate a large class of Operator scaling Gaussian random fields (OSGRF). Such fields are anisotropic generalizations of selfsimilar fields. More specifically, we are able to construct any Gaussian field belonging to this class with given Hurst index and exponent. Our construction provides for simulations of texture as well as for detection of anisotropies in an image a large class of models with controlled anisotropic geometries and structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An optimality result about sample path properties of Operator Scaling Gaussian Random Fields

We study the sample paths properties of Operator scaling Gaussian random fields. Such fields are anisotropic generalizations of anisotropic self-similar random fields as anisotropic Fractional Brownian Motion. Some characteristic properties of the anisotropy are revealed by the regularity of the sample paths. The sharpest way of measuring smoothness is related to these anisotropies and thus to ...

متن کامل

Gaussian fields satisfying simultaneous operator scaling relations

Random fields are a useful tool for modelling spatial phenomenon like environmental fields, including for example, hydrology, geology, oceanography and medical images. Many times the chosen model has to include some statistical dependence structure that might be present across the scales. Thus, an usual assumption is self-similarity (see [Lamp62]), defined for a random field {X(x)}x∈Rd on R by

متن کامل

Parametric estimation for Gaussian operator scaling random fields and anisotropy analysis of bone radiograph textures

In this paper, we consider a stochastic anisotropic model for trabecular bone x-ray images. In [1], a fractal analysis based on isotropic Fractional Brownian Fields was proposed to characterize bone microarchitecture. However anisotropy measurement is of special interest for the diagnosis of osteoporosis [7]. We propose to model trabecular bone radiographs by operator scaling Gaussian random fi...

متن کامل

Hitting Probabilities and the Hausdorff Dimension of the Inverse Images of Anisotropic Gaussian Random Fields

Let X = {X(t), t ∈ RN} be a Gaussian random field with values in R defined by X(t) = ( X1(t), . . . , Xd(t) ) , where X1, . . . , Xd are independent copies of a centered Gaussian random field X0. Under certain general conditions on X0, we study the hitting probabilities of X and determine the Hausdorff dimension of the inverse image X−1(F ), where F ⊆ R is a non-random Borel set. The class of G...

متن کامل

Hölder Regularity for Operator Scaling Stable Random Fields

Abstract. We investigate the sample paths regularity of operator scaling α-stable random fields. Such fields were introduced in [6] as anisotropic generalizations of self-similar fields and satisfy the scaling property {X(cx);x ∈ R} (fdd) = {cX(x);x ∈ R} where E is a d× d real matrix and H > 0. In the case of harmonizable operator scaling random fields, the sample paths are locally Hölderian an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009