Automatic Accent Recognition Systems and the Effects of Data on Performance
نویسنده
چکیده
This paper considers automatic accent recognition system performance in relation to the specific nature of the accent data. This is of relevance to the forensic application, where an accent recogniser may have a place in casework involving various accent classification tasks with different challenges attached. The study presented here is composed of two main parts. Firstly, it examines the performance of five different automatic accent recognition systems when distinguishing between geographically-proximate accents. Using geographically-proximate accents is expected to challenge the systems by increasing the degree of similarity between the varieties we are trying to distinguish between: a type of task which may be of use to forensic speech analysts. The second part of the study is concerned with identifying the specific phonemes which are important in a given accent recognition task, and eliminating those which are not. Depending on the varieties we are classifying, the phonemes which are most useful to the task will vary. This study therefore integrates feature selection methods into the accent recognition system shown to be the highest performer, the Y-ACCDIST-SVM system [1], to help to identify the most valuable speech segments and to increase accent recognition rates.
منابع مشابه
Modelling Accents for Automatic Speech Recognition
Accent is cited as an issue for speech recognition systems. If they are to be widely deployed, Automatic Speech Recognition (ASR) systems must deliver consistently high performance across user populations. Hence the development of accentrobust ASR is of significant importance. This research investigates techniques for compensating for the effects of accents on performance of Hidden Markov Model...
متن کاملReducing Light Change Effects in Automatic Road Detection
Automatic road extraction from aerial images can be very helpful in traffic control and vehicle guidance systems. Most of the road detection approaches are based on image segmentation algorithms. Color-based segmentation is very sensitive to light changes and consequently the change of weather condition affects the recognition rate of road detection systems. In order to reduce the light change ...
متن کاملReducing Light Change Effects in Automatic Road Detection
Automatic road extraction from aerial images can be very helpful in traffic control and vehicle guidance systems. Most of the road detection approaches are based on image segmentation algorithms. Color-based segmentation is very sensitive to light changes and consequently the change of weather condition affects the recognition rate of road detection systems. In order to reduce the light change ...
متن کاملAcoustic model selection for recognition of regional accented speech
Accent is cited as an issue for speech recognition systems [1]. Research has shown that accent mismatch between the training and the test data will result in significant accuracy reduction in Automatic Speech Recognition (ASR) systems. Using HMM based ASR trained on a standard English accent, our study shows that the error rates can be up to seven times higher for accented speech, than for stan...
متن کاملAutomatic Detection of Foreign Accent for Automatic Speech Recognition
Recognition of foreign accented speech remains among the most difficult tasks in automatic speech recognition. It was observed that using models trained on foreign data together with native models improves the recognition for speakers with foreign accent. However such an approach degrades the recognition performances on native speakers. In order to avoid such performance degradation the degree ...
متن کامل