Maintenance of ZPA signaling in cultured mouse limb bud cells.
نویسندگان
چکیده
The positional signal localized to the posterior (zone of polarizing activity or ZPA) region of the vertebrate limb is transiently expressed during development and a decline in ZPA signaling is accelerated when posterior cells are dissociated and cultured in vitro. The evidence that cultured posterior cells display a precocious decline in ZPA signaling when compared to in vivo studies suggests that a factor present in the limb bud maintains or stabilizes ZPA signaling during limb outgrowth and that this maintenance factor is lost and/or exhausted in in vitro studies. We have developed a new culture technique, 'microdissociation', which preserves extracellular components that we have found to be necessary for ZPA signal maintenance. Our data suggest that the limb bud ectoderm produces a maintenance activity that becomes stored in the extracellular matrix where it acts on limb bud cells to stabilize the activity of the ZPA signal. Using our initial characterization of this maintenance activity, we have identified a growth factor, FGF-2 (bFGF), that can replace all of the ZPA signaling maintenance activity observed in microdissociate cultures. The existence of various members of the FGF family in the developing limb strongly argues a role for FGF in stabilizing ZPA signaling in vivo.
منابع مشابه
Polydactyly and ectopic ZPA formation in Alx-4 mutant mice.
Correct development of the limb is dependent on coordination between three distinct signaling centers. Recently, fibroblast growth factor-4 has been identified as a crucial determinant of AER function, which directs limb bud outgrowth, and Sonic hedgehog has been identified as a signaling molecule that mediates ZPA function, which specifies anterior-posterior patterning in the developing limb b...
متن کاملMutations in mouse Aristaless-like4 cause Strong's luxoid polydactyly.
Mutations that affect vertebrate limb development provide insight into pattern formation, evolutionary biology and human birth defects. Patterning of the limb axes depends on several interacting signaling centers; one of these, the zone of polarizing activity (ZPA), comprises a group of mesenchymal cells along the posterior aspect of the limb bud that express sonic hedgehog (Shh) and plays a ke...
متن کاملA duplicated zone of polarizing activity in polydactylous mouse mutants.
The positional signaling along the anteroposterior axis of the developing vertebrate limb is provided by the zone of polarizing activity (ZPA) located at the posterior margin. Recently, it was established that the Sonic hedgehog (Shh) mediates ZPA activity. Here we report that a new mouse mutant, Recombination induced mutant 4 (Rim4), and two old mutants, Hemimelic extra toes (Hx) and Extra toe...
متن کاملExpression of Sonic hedgehog gene in regenerating newt limb blastemas recapitulates that in developing limb buds.
This study aimed at characterizing the Sonic hedgehog (shh) gene in newt limbs, which encodes a signaling molecule of the zone of polarizing activity (ZPA) responsible for determining the anterior-posterior axis of the embryonic chicken and mouse limbs. The reverse transcription-PCR showed that adult newt regenerating limbs express shh genes. In situ hybridization experiments demonstrated that ...
متن کاملInactivation of Sonic Hedgehog Signaling and Polydactyly in Limbs of Hereditary Multiple Malformation, a Novel Type of Talpid Mutant
Hereditary Multiple Malformation (HMM) is a naturally occurring, autosomal recessive, homozygous lethal mutation found in Japanese quail. Homozygote embryos (hmm-/-) show polydactyly similar to talpid2 and talpid3 mutants. Here we characterize the molecular profile of the hmm-/- limb bud and identify the cellular mechanisms that cause its polydactyly. The hmm-/- limb bud shows a severe lack of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 117 4 شماره
صفحات -
تاریخ انتشار 1993