Compensatory locomotor adjustments of rats with cervical or thoracic spinal cord hemisections.

نویسندگان

  • Aubrey A Webb
  • Gillian D Muir
چکیده

The accurate measurement of behavioral compensation after CNS trauma, such as spinal cord injury, is important when assessing the functional effects of injury and treatment in animal models. We investigated the locomotor abilities of rats with unilateral thoracic or cervical spinal cord injuries using a locomotor rating (BBB) scale, reflex tests, and quantitative kinetic measurements. The BBB rating scale indicated that thoracic spinal hemisected (TH) rats had more severely affected hindlimbs compared to cervical spinal hemisected (CH) and sham-operated animals. Kinetic measurements revealed that CH and TH animals moved with different ground reaction force patterns, which nevertheless shared some similarities with each other and with the gait patterns of rats with different unilateral CNS lesions. Uninjured rats typically had an equal distribution of their body weight over the forelimbs and hind limbs, and used their forelimbs predominantly for braking while using their hind limbs mostly for propulsion. CH rats bore more weight on their hind limbs than their forelimbs, while TH animals bore more weight on their forelimbs than their hind limbs. Neither CH nor TH rats used the forelimb ipsilateral to the spinal hemisection for net braking or propulsion. The hindlimb contralateral to the hemisection was placed on the ground prematurely during the stride cycle for both CH and TH animals. The altered kinetics of the locomotor pattern in hemisected animals resulted in changes in the oscillations of total body potential and kinetic energies. These two forms of energy oscillate synchronously in intact locomoting rats, but were asynchronous during parts of the stride cycle in spinal hemisected animals. We conclude that rats develop a general compensatory response for unilateral CNS lesions, which may help stabilize the animal during locomotion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inosine Enhances Axon Sprouting and Motor Recovery after Spinal Cord Injury

Although corticospinal tract axons cannot regenerate long distances after spinal cord injury, they are able to sprout collateral branches rostral to an injury site that can help form compensatory circuits in cases of incomplete lesions. We show here that inosine enhances the formation of compensatory circuits after a dorsal hemisection of the thoracic spinal cord in mature rats and improves coo...

متن کامل

Fetal spinal cord transplants support growth of supraspinal and segmental projections after cervical spinal cord hemisection in the neonatal rat.

Cervical spinal cord injury at birth permanently disrupts forelimb function in goal-directed reaching. Transplants of fetal spinal cord tissue permit the development of skilled forelimb use and associated postural adjustments (, companion article). The aim of this study was to determine whether transplants of fetal spinal cord tissue support the remodeling of supraspinal and segmental pathways ...

متن کامل

Spinal regions involved in baroreflex control of renal sympathetic nerve activity in the rat.

Spinal cord injury causes debilitating cardiovascular disturbances. The etiology of these disturbances remains obscure, partly because the locations of spinal cord pathways important for sympathetic control of cardiovascular function have not been thoroughly studied. To elucidate these pathways, we examined regions of the thoracic spinal cord important for reflex sympathetic control of arterial...

متن کامل

Thoracic Rat Spinal Cord Contusion Injury Induces Remote Spinal Gliogenesis but Not Neurogenesis or Gliogenesis in the Brain

After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether ...

متن کامل

Neurochemical excitation of propriospinal neurons facilitates locomotor command signal transmission in the lesioned spinal cord.

Previous studies of the in vitro neonatal rat brain stem-spinal cord showed that propriospinal relays contribute to descending transmission of a supraspinal command signal that is capable of activating locomotion. Using the same preparation, the present series examines whether enhanced excitation of thoracic propriospinal neurons facilitates propagation of the locomotor command signal in the le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurotrauma

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2002