Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.
نویسندگان
چکیده
Physical principles applied to remote sensing data are key to successfully quantifying vegetation physiological condition from the study of the light interaction with the canopy under observation. We used the fluorescence-reflectance-transmittance (FRT) and PROSPECT leaf models to simulate reflectance as a function of leaf biochemical and fluorescence variables. A series of laboratory measurements of spectral reflectance at leaf and canopy levels and a modeling study were conducted, demonstrating that effects of chlorophyll fluorescence (CF) can be detected by remote sensing. The coupled FRT and PROSPECT model enabled CF and chlorophyll a + b (Ca + b) content to be estimated by inversion. Laboratory measurements of leaf reflectance (r) and transmittance (t) from leaves with constant Ca + b allowed the study of CF effects on specific fluorescence-sensitive indices calculated in the Photosystem I (PS-I) and Photosystem II (PS-II) optical region, such as the curvature index [CUR; (R675.R690)/R2(683)]. Dark-adapted and steady-state fluorescence measurements, such as the ratio of variable to maximal fluorescence (Fv/Fm), steady state maximal fluorescence (F'm), steady state fluorescence (Ft), and the effective quantum yield (delta F/F'm) are accurately estimated by inverting the FRT-PROSPECT model. A double peak in the derivative reflectance (DR) was related to increased CF and Ca + b concentration. These results were consistent with imagery collected with a compact airborne spectrographic imager (CASI) sensor from sites of sugar maple (Acer saccharum Marshall) of high and low stress conditions, showing a double peak on canopy derivative reflectance in the red-edge spectral region. We developed a derivative chlorophyll index (DCI; calculated as D705/D722), a function of the combined effects of CF and Ca + b content, and used it to detect vegetation stress.
منابع مشابه
Early Detection and Quantification of Almond Red Leaf Blotch Using High-Resolution Hyperspectral and Thermal Imagery
Red leaf blotch is one of the major fungal foliar diseases affecting almond orchards. High-resolution thermal and hyperspectral airborne imagery was acquired from two flights and compared with concurrent field visual evaluations for disease incidence and severity. Canopy temperature and vegetation indices were calculated from thermal and hyperspectral imagery and analyzed for their ability to d...
متن کاملVisual Analysis for Detection and Quantification of Pseudomonas cichorii Disease Severity in Tomato Plants
Pathogen infection in plants induces complex responses ranging from gene expression to metabolic processes in infected plants. In spite of many studies on biotic stress-related changes in host plants, little is known about the metabolic and phenotypic responses of the host plants to Pseudomonas cichorii infection based on image-based analysis. To investigate alterations in tomato plants accordi...
متن کاملRethinking Chlorophyll Responses to Stress: Fluorescence and Reflectance Remote Sensing in a Coastal Environment
Chlorophyll fluorescence and hyperspectral reflectance were used to evaluate physiological responses to two common stressors in coastal environments. Chlorophyll content is one indicator of drought and salinity vegetation stress because of its direct role in the photosynthetic process and electron transport. Recent advances in fluorescence spectroscopy have led to the development of numerous re...
متن کاملAssessing Steady-state Fluorescence and PRI from Hyperspectral Proximal Sensing as Early Indicators of Plant Stress: The Case of Ozone Exposure
High spectral resolution spectrometers were used to detect optical signals ofongoing plant stress in potted white clover canopies subjected to ozone fumigation. Thecase of ozone stress is used in this manuscript as a paradigm of oxidative stress. Steadystatefluorescence (Fs) and the Photochemical Reflectance Index (PRI) were investigatedas advanced hyperspectral remote sensing techniques able t...
متن کاملUse of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots.
Eleven spectral vegetation indices that emphasize foliar plant pigments were calculated using airborne hyperspectral imagery and evaluated in 2004 and 2005 for their ability to detect experimental plots of corn manually inoculated with Ostrinia nubilalis (Hübner) neonate larvae. Manual inoculations were timed to simulate infestation of corn, Zea mays L., by first and second flights of adult O. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental quality
دوره 31 5 شماره
صفحات -
تاریخ انتشار 2002