Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action.
نویسندگان
چکیده
Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation.
منابع مشابه
Ubl4A is required for insulin-induced Akt plasma membrane translocation through promotion of Arp2/3-dependent actin branching.
The serine-threonine kinase Akt is a key regulator of cell proliferation and survival, glucose metabolism, cell mobility, and tumorigenesis. Activation of Akt by extracellular stimuli such as insulin centers on the interaction of Akt with PIP3 on the plasma membrane, where it is subsequently phosphorylated and activated by upstream protein kinases. However, it is not known how Akt is recruited ...
متن کاملDevelopment of a Human Breast-Cancer Derived Cell Line Stably Expressing a Bioluminescence Resonance Energy Transfer (BRET)-Based Phosphatidyl Inositol-3 Phosphate (PIP3) Biosensor
Stimulation of tyrosine kinase receptors initiates a signaling cascade that activates PI3K. Activated PI3K uses PIP2 to generate PIP3, which recruit Akt to the plasma membrane through its pleckstrin homology (PH) domain, permitting its activation by PDKs. Activated Akt controls important biological functions, including cell metabolism, proliferation and survival. The PI3K pathway is therefore a...
متن کاملOptogenetic Control of PIP3: PIP3 Is Sufficient to Induce the Actin-Based Active Part of Growth Cones and Is Regulated via Endocytosis
Phosphatidylinositol-3,4,5-trisphosphate (PIP3) is highly regulated in a spatiotemporal manner and plays multiple roles in individual cells. However, the local dynamics and primary functions of PIP3 in developing neurons remain unclear because of a lack of techniques for manipulating PIP3 spatiotemporally. We addressed this issue by combining optogenetic control and observation of endogenous PI...
متن کاملAutocrine action of adiponectin on human fat cells prevents the release of insulin resistance-inducing factors.
The adipocyte hormone adiponectin is negatively correlated with obesity and insulin resistance and may exert an important antidiabetes function. In this study, primary human skeletal muscle cells were cocultured with human fat cells or incubated with adipocyte-conditioned medium in the presence or absence of the globular domain of adiponectin (gAcrp30) to analyze its capacity to restore normal ...
متن کاملHTLV-I Tax regulates the cellular proliferation through the down-regulation of PIP3-phosphatase expressions via the NF-κB pathway.
An oncogenic retrovirus, human T-cell leukemia virus type I (HTLV-I), encodes an oncoprotein, Tax, which plays critical roles in leukemogenesis of adult T-cell leukemia/lymphoma (ATLL) through the pleiotropic actions such as transcriptional regulation, cell cycle control, and transformation. We have previously reported that PTEN and SHIP- 1, PIP3 inositol phosphatases that negatively regulate t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 129 10 شماره
صفحات -
تاریخ انتشار 2016