Logical transformation of genome-scale metabolic models for gene level applications and analysis
نویسندگان
چکیده
MOTIVATION In recent years, genome-scale metabolic models (GEMs) have played important roles in areas like systems biology and bioinformatics. However, because of the complexity of gene-reaction associations, GEMs often have limitations in gene level analysis and related applications. Hence, the existing methods were mainly focused on applications and analysis of reactions and metabolites. RESULTS Here, we propose a framework named logic transformation of model (LTM) that is able to simplify the gene-reaction associations and enables integration with other developed methods for gene level applications. We show that the transformed GEMs have increased reaction and metabolite number as well as degree of freedom in flux balance analysis, but the gene-reaction associations and the main features of flux distributions remain constant. In addition, we develop two methods, OptGeneKnock and FastGeneSL by combining LTM with previously developed reaction-based methods. We show that the FastGeneSL outperforms exhaustive search. Finally, we demonstrate the use of the developed methods in two different case studies. We could design fast genetic intervention strategies for targeted overproduction of biochemicals and identify double and triple synthetic lethal gene sets for inhibition of hepatocellular carcinoma tumor growth through the use of OptGeneKnock and FastGeneSL, respectively. AVAILABILITY AND IMPLEMENTATION Source code implemented in MATLAB, RAVEN toolbox and COBRA toolbox, is public available at https://sourceforge.net/projects/logictransformationofmodel.
منابع مشابه
Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications
Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...
متن کاملInvestigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data
Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...
متن کاملI-40: Male Genome Programming, Infertility and Cancer
Background: During male germ cells differentiation, genomewide re-organizations and highly specific programming of the male genome occur. These changes not only include the large-scale meiotic shuffling of genes, taking place in spermatocytes, but also a complete “re-packaging” of the male genome in post meiotic cells, leading to a highly compacted nucleo-protamine structure in the mature sperm...
متن کاملStoichiometric Representation of Gene–Protein–Reaction Associations Leverages Constraint-Based Analysis from Reaction to Gene-Level Phenotype Prediction
Genome-scale metabolic reconstructions are currently available for hundreds of organisms. Constraint-based modeling enables the analysis of the phenotypic landscape of these organisms, predicting the response to genetic and environmental perturbations. However, since constraint-based models can only describe the metabolic phenotype at the reaction level, understanding the mechanistic link betwe...
متن کاملredGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models
Genome-scale metabolic reconstructions have proven to be valuable resources in enhancing our understanding of metabolic networks as they encapsulate all known metabolic capabilities of the organisms from genes to proteins to their functions. However the complexity of these large metabolic networks often hinders their utility in various practical applications. Although reduced models are commonl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 31 14 شماره
صفحات -
تاریخ انتشار 2015