Simultaneous Convexification of Bilinear Functions over Polytopes with Application to Network Interdiction
نویسندگان
چکیده
We study the simultaneous convexification of graphs of bilinear functions gk(x;y) = yTAkx over x ∈ Ξ = {x ∈ [0, 1]n |Ex ≥ f} and y ∈ ∆m = { y ∈ R+ ∣∣1Ty ≤ 1}. We propose a constructive procedure to obtain a linear description of the convex hull of the resulting set. This procedure can be applied to derive convex and concave envelopes of certain bilinear functions, to study unary expansions of integer variables in mixed integer bilinear sets, and to obtain convex hulls of sets with complementarity constraints. Exploiting the structure of Ξ, the procedure naturally yields stronger linearizations for bilinear terms in a variety of practical settings. In particular, we demonstrate the effectiveness of the approach by strengthening the traditional dual formulation of network interdiction problems and report encouraging preliminary numerical results.
منابع مشابه
A Note on the Integrality Gap in the Nodal Interdiction Problem
In the maximum flow network interdiction problem, an attacker attempts to minimize the maximum flow by interdicting flow on the arcs of network. In this paper, our focus is on the nodal interdiction for network instead of the arc interdiction. Two path inequalities for the node-only interdiction problem are represented. It has been proved that the integrality gap of relaxation of the maximum fl...
متن کاملConvex envelopes of bivariate functions through the solution of KKT systems
In this paper we exploit a slight variant of a result previously proved in [11] to define a procedure which delivers the convex envelope of some bivariate functions over polytopes. The procedure is based on the solution of a KKT system and simplifies the derivation of the convex envelope with respect to previously proposed techniques. The procedure is applied to derive the convex envelope of th...
متن کاملOptimization Problems with Convex Epigraphs. Application to Optimal Control
For a class of infinite-dimensional minimization problems with nonlinear equality constraints, an iterative algorithm for finding global solutions is suggested. A key assumption is the convexity of the “epigraph”, a set in the product of the image spaces of the constraint and objective functions. A convexification method involving randomization is used. The algorithm is based on the extremal sh...
متن کاملStrong valid inequalities for orthogonal disjunctions and bilinear covering sets
In this paper, we develop a convexification tool that enables the construction of convex hulls for orthogonal disjunctive sets using convex extensions and disjunctive programming techniques. A distinguishing feature of our technique is that, unlike most applications of disjunctive programming, it does not require the introduction of new variables in the relaxation. We develop and apply a toolbo...
متن کاملInclusion Certificates and Simultaneous Convexification of Functions
We define the inclusion certificate as a measure that expresses each point in the domain of a collection of functions as a convex combination of other points in the domain. Using inclusion certificates, we extend the convex extensions theory to enable simultaneous convexification of functions. We discuss conditions under which the domain of the functions can be reduced without affecting the sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 27 شماره
صفحات -
تاریخ انتشار 2017