A New Approach to Rank One Linear Algebraic Groups
نویسندگان
چکیده
One can develop the basic structure theory of linear algebraic groups (the root system, Bruhat decomposition, etc.) in a way that bypasses several major steps of the standard development, including the self-normalizing property of Borel subgroups. An awkwardness of the theory of linear algebraic groups is that one must develop a lot of material before one can even characterize PGL2. Our goal here is to show how to develop the root system, etc., using only the completeness of the flag variety, its immediate consequences, and some facts about solvable groups. In particular, one can skip over the usual analysis of Cartan subgroups, the fact that G is the union of its Borel subgroups, the connectedness of torus centralizers, and the normalizer theorem (that Borel subgroups are self-normalizing). The main idea is a new approach to the structure of rank 1 groups; the key step is lemma 5. All algebraic geometry is over a fixed algebraically closed field. G always denotes a connected linear algebraic group with Lie algebra g, T a maximal torus, and B a Borel subgroup containing it. We assume the structure theory for connected solvable groups, and the completeness of the flag variety G/B and some of its consequences. Namely: that all Borel subgroups (resp. maximal tori) are conjugate; that G is nilpotent if one of its Borel subgroups is; that CG(T )0 lies in every Borel subgroup containing T ; and that NG(B) contains B of finite index and (therefore) is self-normalizing. We also assume known that the centralizer of a torus has the expected dimension, namely, that of the subspace of g where the torus acts trivially. For these results we refer to Borel [1], Humphreys [2] and Springer [3]. In section 1 we develop a few properties of solvable groups, and in section 2 we treat the structure of rank 1 groups. The root system, etc., can then be developed in essentially the standard way, so after Date: October 27, 2007. 2000 Mathematics Subject Classification. 20GXX, 14GXX. Partly supported by NSF grants DMS-024512 and DMS-0600112.
منابع مشابه
L-functions with Large Analytic Rank and Abelian Varieties with Large Algebraic Rank over Function Fields
The goal of this paper is to explain how a simple but apparently new fact of linear algebra together with the cohomological interpretation of L-functions allows one to produce many examples of L-functions over function fields vanishing to high order at the center point of their functional equation. Conjectures of Birch and Swinnerton-Dyer, Bloch, and Beilinson relate the orders of vanishing of ...
متن کاملLinear Algebraic Groups without the Normalizer Theorem
One can develop the basic structure theory of linear algebraic groups (the root system, Bruhat decomposition, etc.) in a way that bypasses several major steps of the standard development, including the self-normalizing property of Borel subgroups. An awkwardness of the theory of linear algebraic groups is that one must develop a lot of material about general linear algebraic groups before one c...
متن کاملA new approach to rank the decision making units in presence of infeasibility in intuitionistic fuzzy environment
Data envelopment analysis (DEA) is a linear programming based methodology to determine the relative performance efficiencies of homogeneous decision making units (DMUs). In real world applications, some input and output datas do not possess crisp/fuzzy essence but they possess intuitionistic fuzzy (IF) essence. So, in this study, we develop an IF BCC (IFBCC) and an IF super efficiency BCC (IFSE...
متن کاملAddendum to: "Infinite-dimensional versions of the primary, cyclic and Jordan decompositions", by M. Radjabalipour
In his paper mentioned in the title, which appears in the same issue of this journal, Mehdi Radjabalipour derives the cyclic decomposition of an algebraic linear transformation. A more general structure theory for linear transformations appears in Irving Kaplansky's lovely 1954 book on infinite abelian groups. We present a translation of Kaplansky's results for abelian groups into the terminolo...
متن کامل