Predicting the dry deposition of aerosol‐sized particles using layer‐resolved canopy and pipe flow analogy models: Role of turbophoresis
نویسندگان
چکیده
[1] A number of synthesis activities, mathematical modeling, and experiments on dry deposition of aerosol‐sized particles over forested surfaces point to three disjointed findings: (1) deposition velocities measured over tall forests do not support a clearly defined minimum for particle sizes in the range of 0.1–2 mm; (2) when measurements of the normalized deposition velocity (Vd ) are presented as a function of the normalized particle timescale (tp ), where the normalizing variables are the friction velocity and air viscosity, a power law scaling in the form of Vd + ∼ (tp) emerges in the so‐called inertial‐impaction regime for many laboratory and crop experiments, but none of the forest measurements fall on this apparent scaling law; and (3) two recent models with entirely different assumptions about the representation of the particle deposition process reproduce common data sets for forests. We show that turbophoresis, when accounted for at the leaf scale in vertically resolved or multilayer models (MLMs), provides a coherent explanation for the first two findings and sheds light on the third. The MLM resolves the canopy vertical structure and its effects on both the flow statistics and the leaf particle collection mechanisms. The proposed MLM predictions agree with a recent two‐level particle‐resolving data set collected over 1 year duration for a Scots pine stand in Hyytiälä (southern Finland). Such an approach can readily proportion the particle deposition onto foliage and forest floor and can take advantage of recent advances in measurements of canopy structural properties derived from remote sensing platforms.
منابع مشابه
The effects of the canopy medium on dry deposition velocities of aerosol particles in the canopy sub-layer above forested ecosystems
Understanding how the leaf area density (a(z)) and its depth integrated value, the leaf area index (LAI), modify dry deposition velocities (Vd) of aerosol particles within the canopy sub-layer is needed for progressing on a plethora of aerosol related problems in climate change, air quality, and ecosystem service evaluation. Here, the interplay between a(z) (and LAI) of tall and densely foreste...
متن کاملDeposition of Various Shapes Particles on a Rough Surface in Turbulent Flow
An experiment set-up is used to study wall deposition rate of particles on a rough surface in a turbulent channel flow. Deposition velocities for three classes of particles, namely, spherical glass particles, irregular shape polymer particles, and fibrous silicon particles are studied. The particle concentration at the test section was measured with the aid of an isokinetic probe in conjunction...
متن کاملOptimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes
Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...
متن کاملFree Convection Flow and Heat Transfer of Nanofluids of Different Shapes of Nano-Sized Particles over a Vertical Plate at Low and High Prandtl Numbers
In this paper, free convection flow and heat transfer of nanofluids of differently-shaped nano-sized particles over a vertical plate at very low and high Prandtl numbers are analyzed. The governing systems of nonlinear partial differential equations of the flow and heat transfer processes are converted to systems of nonlinear ordinary differential equation through similarity transformations. T...
متن کاملNumerical Study of Heat Transfer and Aerosol Deposition in a Room Environment with Under-floor or Baseboard Heating Systems
In this study, heat transfer and aerosol deposition in the under-floor and baseboard heating systems have been investigated, numerically. The aim of this study is a comparison between these heating systems. This comparison obtains the optimal heating system with low suspended particles in the air. Computational fluid dynamic with Eulerian-Lagrangian method has been used to simulate fluid and pa...
متن کامل