The dual of convolutional codes over $\mathbb{Z}_{p^r}$
نویسندگان
چکیده
An important class of codes widely used in applications is the class of convolutional codes. Most of the literature of convolutional codes is devoted to convolutional codes over finite fields. The extension of the concept of convolutional codes from finite fields to finite rings have attracted much attention in recent years due to fact that they are the most appropriate codes for phase modulation. However convolutional codes over finite rings are more involved and not fully understood. Many results and features that are well-known for convolutional codes over finite fields have not been fully investigated in the context of finite rings. In this paper we focus in one of these unexplored areas, namely, we investigate the dual codes of convolutional codes over finite rings. In particular we study the p-dimension of the dual code of a convolutional code over a finite ring. This contribution can be considered a generalization and an extension, to the rings case, of the work done by Forney and McEliece on the dimension of the dual code of a convolutional code over a finite field. Mohammed El Oued FSMMath Department, University of Monastir, Monastir 5050, Tunisia e-mail: [email protected] Diego Napp CIDMA Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Aveiro, Portugal e-mail: [email protected] Raquel Pinto CIDMA Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Aveiro, Portugal e-mail: [email protected] Marisa Toste CIDMA Center for Research and Development in Mathematics and Applications, Instituto Politcnico de Coimbra-ESTGOH, Coimbra, Portugal e-mail: [email protected]
منابع مشابه
Self-Dual Codes over $\mathbb{Z}_2\times (\mathbb{Z}_2+u\mathbb{Z}_2)$
In this paper, we study self-dual codes over Z2× (Z2+uZ2), where u 2 = 0. Three types of self-dual codes are defined. For each type, the possible values α, β such that there exists a code C ⊆ Z2×(Z2+uZ2) β are established. We also present several approaches to construct self-dual codes over Z2 × (Z2 + uZ2). Moreover, the structure of two-weight self-dual codes is completely obtained for α · β 6...
متن کاملOn Codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}$
In this paper we investigate linear codes with complementary dual (LCD) codes and formally self-dual codes over the ring $R=\F_{q}+v\F_{q}+v^{2}\F_{q}$, where $v^{3}=v$, for $q$ odd. We give conditions on the existence of LCD codes and present construction of formally self-dual codes over $R$. Further, we give bounds on the minimum distance of LCD codes over $\F_q$ and extend these to codes ove...
متن کاملOn a class of constacyclic codes over the non-principal ideal ring $\mathbb{Z}_{p^s}+u\mathbb{Z}_{p^s}$
(1+pw)-constacyclic codes of arbitrary length over the nonprincipal ideal ring Zps + uZps are studied, where p is a prime, w ∈ Z × ps and s an integer satisfying s ≥ 2. First, the structure of any (1 + pw)constacyclic code over Zps +uZps are presented. Then enumerations for the number of all codes and the number of codewords in each code, and the structure of dual codes for these codes are give...
متن کامل$(1+2u)$-constacyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$
Let $R=\mathbb{Z}_4+u\mathbb{Z}_4,$ where $\mathbb{Z}_4$ denotes the ring of integers modulo $4$ and $u^2=0$. In the present paper, we introduce a new Gray map from $R^n$ to $\mathbb{Z}_{4}^{2n}.$ We study $(1+2u)$-constacyclic codes over $R$ of odd lengths with the help of cyclic codes over $R$. It is proved that the Gray image of $(1+2u)$-constacyclic codes of length $n$ over $R$ are cyclic c...
متن کامل2-D skew constacyclic codes over R[x, y; ρ, θ]
For a finite field $mathbb{F}_q$, the bivariate skew polynomial ring $mathbb{F}_q[x,y;rho,theta]$ has been used to study codes cite{XH}. In this paper, we give some characterizations of the ring $R[x,y;rho,theta]$, where $R$ is a commutative ring. We investigate 2-D skew $(lambda_1,lambda_2)$-constacyclic codes in the ring $R[x,y;rho,theta]/langle x^l-lambda_1,y^s-lambda_2rangle_{mathit{l}}.$ A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1601.05220 شماره
صفحات -
تاریخ انتشار 2016