Global Carleman estimates for waves and applications

نویسندگان

  • Lucie Baudouin
  • Maya De Buhan
  • Sylvain Ervedoza
  • Maya de Buhan
چکیده

Abstract In this article, we extensively develop Carleman estimates for the wave equation and give some applications. We focus on the case of an observation of the flux on a part of the boundary satisfying the Gamma conditions of Lions. We will then consider two applications. The first one deals with the exact controllability problem for the wave equation with potential. Following the duality method proposed by Fursikov and Imanuvilov in the context of parabolic equations, we propose a constructive method to derive controls that weakly depend on the potentials. The second application concerns an inverse problem for the waves that consists in recovering an unknown time-independent potential from a single measurement of the flux. In that context, our approach does not yield any new stability result, but proposes a constructive algorithm to rebuild the potential. In both cases, the main idea is to introduce weighted functionals that contain the Carleman weights and then to take advantage of the freedom on the Carleman parameters to limit the influences of the potentials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations

A. Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are pre...

متن کامل

Carleman estimates for the heat equation with discontinuous diffusion coefficients

We consider the heat equation with a diffusion coefficient that is discontinuous at an interface. We give global Carleman estimates for solutions of this equation, even if the jump of the coefficient across the interface has not a constant sign. AMS classification scheme numbers: 35K05, 35K55, 35R05, 35R30

متن کامل

Improved Hardy-poincaré Inequalities and Sharp Carleman Estimates for Degenerate/singular Parabolic Problems

We consider the following class of degenerate/singular parabolic operators: Pu = ut − (xux)x − λ xβ u, x ∈ (0, 1), associated to homogeneous boundary conditions of Dirichlet and/or Neumann type. Under optimal conditions on the parameters α ≥ 0, β, λ ∈ R, we derive sharp global Carleman estimates. As an application, we deduce observability and null controllability results for the corresponding e...

متن کامل

Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients

We derive global Carleman estimates for one-dimensional linear parabolic operators ∂t ± ∂x(c∂x) with a coefficient c with bounded variations. These estimates are obtained by approximating c by piecewise regular coefficients, cε, and passing to the limit in the Carleman estimates associated to the operators defined with cε. Such estimates yield results of controllability to the trajectories for ...

متن کامل

Carleman Estimates and Inverse Problems for Dirac Operators

We consider limiting Carleman weights for Dirac operators and prove corresponding Carleman estimates. In particular, we show that harmonic functions can be considered as limiting Carleman weights for Dirac operators. As an application we consider the inverse problem of recovering a Lipschitz continuous magnetic field and electric potential from boundary measurements for the Pauli Dirac operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013