Interpolation formula between very low and intermediate-to-high damping Kramers escape rates for single-domain ferromagnetic particles.
نویسندگان
چکیده
It is shown that the Mel'nikov-Meshkov formalism for bridging the very low damping (VLD) and intermediate-to-high damping (IHD) Kramers escape rates as a function of the dissipation parameter for mechanical particles may be extended to the rotational Brownian motion of magnetic dipole moments of single-domain ferromagnetic particles in nonaxially symmetric potentials of the magnetocrystalline anisotropy so that both regimes of damping occur. The procedure is illustrated by considering the particular nonaxially symmetric problem of superparamagnetic particles possessing uniaxial anisotropy subject to an external uniform field applied at an angle to the easy axis of magnetization. Here the Mel'nikov-Meshkov treatment is found to be in good agreement with an exact calculation of the smallest eigenvalue of Brown's Fokker-Planck equation, provided the external field is large enough to ensure significant departure from axial symmetry, so that the VLD and IHD formulas for escape rates of magnetic dipoles for nonaxially symmetric potentials are valid.
منابع مشابه
Reversal time of the magnetization of single-domain ferromagnetic particles with mixed uniaxial and cubic anisotropy
The reversal time of the magnetization of single-domain ferromagnetic particles is estimated for mixed uniaxial and cubic anisotropy energies possessing nonparaboloidal saddles and well bottoms or either. The calculation generalizes the existing adaptation of the Kramers escape rate theory to fine ferromagnetic particles with nonaxially symmetric magnetocrystalline-Zeeman energies, originally b...
متن کاملInertial effects in the orientational relaxation of rodlike molecules in a uniaxial potential.
The inertial rotational Brownian motion and dielectric relaxation of an assembly of noninteracting rodlike polar molecules in a uniaxial potential are studied. The infinite hierarchy of differential-recurrence relations for the equilibrium correlation functions is generated by averaging the governing inertial Langevin equation over its realizations in phase space. The solution of this hierarchy...
متن کاملThermally activated escape rate for the Brownian motion of a fixed axis rotator in a double well potential for all values of the dissipation.
The extension of the Kramers theory of the escape rate of a Brownian particle from a potential well to the entire range of damping proposed by Mel'nikov and Meshkov [J. Chem, Phys. 85, 1018 (1986)] is applied to the rotational Brownian motion of fixed axis rotators in a double well cosine potential. The procedure yields an expression for the Kramers escape rate valid for all values of the dissi...
متن کاملThermally activated escape rate for a Brownian particle in a tilted periodic potential for all values of the dissipation.
The translational Brownian motion of a particle in a tilted washboard potential is considered. The dynamic structure factor and longest relaxation time are evaluated from the solution of the governing Langevin equation by using the matrix continued fraction method. The longest relaxation time is compared with the Kramers theory of the escape rate of a Brownian particle from a potential well as ...
متن کاملNonlinear response of permanent dipoles in a uniaxial potential to alternating fields.
It is shown how the existing theory of the dynamic Kerr effect and nonlinear dielectric relaxation based on the noninertial Brownian rotation of noninteracting rigid dipolar particles may be generalized to take into account interparticle interactions using the Maier-Saupe mean field potential. The results (available in simple closed form) suggest that the frequency dependent nonlinear response ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 63 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2001