Least Absolute Relative Error Estimation.

نویسندگان

  • Kani Chen
  • Shaojun Guo
  • Yuanyuan Lin
  • Zhiliang Ying
چکیده

Multiplicative regression model or accelerated failure time model, which becomes linear regression model after logarithmic transformation, is useful in analyzing data with positive responses, such as stock prices or life times, that are particularly common in economic/financial or biomedical studies. Least squares or least absolute deviation are among the most widely used criterions in statistical estimation for linear regression model. However, in many practical applications, especially in treating, for example, stock price data, the size of relative error, rather than that of error itself, is the central concern of the practitioners. This paper offers an alternative to the traditional estimation methods by considering minimizing the least absolute relative errors for multiplicative regression models. We prove consistency and asymptotic normality and provide an inference approach via random weighting. We also specify the error distribution, with which the proposed least absolute relative errors estimation is efficient. Supportive evidence is shown in simulation studies. Application is illustrated in an analysis of stock returns in Hong Kong Stock Exchange.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Alternative Matrix Entry Estimation Techniques

Estimation of trip tables and other matrices that are subject to constraints is a common practical problem. This note reviews four common estimation methods: (1) minimization of the sum of absolute deviations, (2) the biproportional technique, (3) information minimization and (4) constrained generalized least squares (CGLS) regression. A small example illustrates their application. Computationa...

متن کامل

Estimation of Scale (σ) and Shape (θ) parameters of Type I Generalized Half Logistic Distribution using Median Ranks Method

This paper considers an Type I Generalized Half Logistic Distribution. We discussed the scale (σ) and shape (θ) parameters estimation using the median ranks method (Benard‟s approximation). Rama Krishna(2008) 1 studied the Type I Generalized Half Logistic Distribution scale (σ) and shape (θ) parameters estimation using the Least Square Method in two step estimation method. Also we computed Aver...

متن کامل

Estimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data

This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...

متن کامل

Reduction of Odometry Error in a two Wheeled Differential Drive Robot (TECHNICAL NOTE)

Pose estimation is one of the vital issues in mobile robot navigation. Odometry data can be fused with absolute position measurements to provide better and more reliable pose estimation. This paper deals with the determination of better relative localization of a two wheeled differential drive robot by means of odometry by considering the influence of parameters namely weight, velocity, wheel p...

متن کامل

Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring

This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 105 491  شماره 

صفحات  -

تاریخ انتشار 2010