Microtubule-associated protein AtMPB2C plays a role in organization of cortical microtubules, stomata patterning, and tobamovirus infectivity.
نویسندگان
چکیده
AtMPB2C is the Arabidopsis (Arabidopsis thaliana) homolog of MPB2C, a microtubule-associated host factor of tobacco mosaic virus movement protein that was been previously identified in Nicotiana tabacum. To analyze the endogenous function of AtMPB2C and its role in viral infections, transgenic Arabidopsis plant lines stably overexpressing green fluorescent protein (GFP)-AtMPB2C were established. The GFP-AtMPB2C fusion protein was detectable in various cell types and organs and localized at microtubules in a punctuate pattern or in filaments. To determine whether overexpression impacted on the cortical microtubular cytoskeleton, GFP-AtMPB2C-overexpressing plants were compared to known microtubular marker lines. In rapidly elongated cell types such as vein cells and root cells, GFP-AtMPB2C overexpression caused highly unordered assemblies of cortical microtubules, a disturbed, snake-like microtubular shape, and star-like crossing points of microtubules. Phenotypically, GFP-AtMPB2C transgenic plants showed retarded growth but were viable and fertile. Seedlings of GFP-AtMPB2C transgenic plants were characterized by clockwise twisted leaves, clustered stomata, and enhanced drought tolerance. GFP-AtMPB2C-overexpressing plants showed increased resistance against oilseed rape mosaic virus, a close relative of tobacco mosaic virus, but not against cucumber mosaic virus when compared to Arabidopsis wild-type plants. These results suggest that AtMPB2C is involved in the alignment of cortical microtubules, the patterning of stomata, and restricting tobamoviral infections.
منابع مشابه
The dynamic interplay of plasma membrane domains and cortical microtubules in secondary cell wall patterning
Patterning of the cellulosic cell wall underlies the shape and function of plant cells. The cortical microtubule array plays a central role in the regulation of cell wall patterns. However, the regulatory mechanisms by which secondary cell wall patterns are established through cortical microtubules remain to be fully determined. Our recent study in xylem vessel cells revealed that a mutual inhi...
متن کاملInfluence of taxol and CNTs on the stability analysis of protein microtubules
Microtubules are used as targets for anticancer drugs due to their crucial role in the process of mitosis. Recent studies show that carbon nanotubes (CNTs) can be classified as microtubule-stabilizing agents as they interact with protein microtubules (MTs), leading to interference in the mitosis process. CNTs hold a substantial promising application in cancer therapy in conjunction with other c...
متن کاملFree Vibration Analysis of Microtubules as Orthotropic Elastic Shells Using Stress and Strain Gradient Elasticity Theory
In this paper, vibration of the protein microtubule, one of the most important intracellular elements serving as one of the common components among nanotechnology, biotechnology and mechanics, is investigated using stress and strain gradient elasticity theory and orthotropic elastic shells model. Microtubules in the cell are influenced by internal and external stimulation and play a part in con...
متن کاملEstablishment of Polarity during Organization of the Acentrosomal Plant Cortical Microtubule Array□D □V
The plant cortical microtubule array is a unique acentrosomal array that is essential for plant morphogenesis. To understand how this array is organized, we exploited the microtubule ( )-end tracking activity of two Arabidopsis EB1 proteins in combination with FRAP (fluorescence recovery after photobleaching) experiments of GFP-tubulin to examine the relationship between cortical microtubule ar...
متن کاملEstablishment of polarity during organization of the acentrosomal plant cortical microtubule array.
The plant cortical microtubule array is a unique acentrosomal array that is essential for plant morphogenesis. To understand how this array is organized, we exploited the microtubule (+)-end tracking activity of two Arabidopsis EB1 proteins in combination with FRAP (fluorescence recovery after photobleaching) experiments of GFP-tubulin to examine the relationship between cortical microtubule ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 149 3 شماره
صفحات -
تاریخ انتشار 2009