An Exact Penalty Method for Binary Optimization Based on MPEC Formulation
نویسندگان
چکیده
Binary optimization is a central problem in mathematical optimization and its applications are abundant. To solve this problem, we propose a new class of continuous optimization techniques, which is based on Mathematical Programming with Equilibrium Constraints (MPECs). We first reformulate the binary program as an equivalent augmented biconvex optimization problem with a bilinear equality constraint, then we propose an exact penalty method to solve it. The resulting algorithm seeks a desirable solution to the original problem via solving a sequence of linear programming convex relaxation subproblems. In addition, we prove that the penalty function, induced by adding the complementarity constraint to the objective, is exact, i.e., it has the same local and global minima with those of the original binary program when the penalty parameter is over some threshold. The convergence of the algorithm can be guaranteed, since it essentially reduces to block coordinate descent in the literature. Finally, we demonstrate the effectiveness of our method on the problem of dense subgraph discovery. Extensive experiments show that our method outperforms existing techniques, such as iterative hard thresholding and linear programming relaxation.
منابع مشابه
Exact Penalty Decomposition Method for Zero-Norm Minimization Based on MPEC Formulation
We reformulate the zero-norm minimization problem as an equivalent mathematical program with equilibrium constraints and establish that its penalty problem, induced by adding the complementarity constraint to the objective, is exact. Then, by the special structure of the exact penalty problem, we propose a decomposition method that can seek a global optimal solution of the zero-norm minimizatio...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملAn MPEC formulation for dynamic optimization of distillation operations
We consider the dynamic optimization of chemical processes with changes in the number of equilibrium phases. Recent work has shown that transitions in the number of phases can be modeled as a mathematical program with equilibrium constraints (MPEC). This study generalizes the MPEC to consider dynamic characteristics. In particular, we describe a simultaneous discretization and solution strategy...
متن کاملA likelihood-MPEC approach to target classification
In this paper we develop a method for classifying an unknown data vector as belonging to one of several classes. This method is based on the statistical methods of maximum likehood and borrowed strength estimation. We develop an MPEC procedure (for Mathematical Program with Equilibrium Constraints) for the classification of a multi-dimensional observation, using a finite set of observed trainin...
متن کاملA Smoothing Penalty Method for Mathematical Programs with Equilibrium Constraints
In this thesis, a new smoothing penalty algorithm is introduced to solve a mathematical program with equilibrium constraints (MPEC). By smoothing the exact penalty function, an MPEC is reformulated as a series of subprograms which belong to a class of MPECs with simple linear complementarity constraints. To deal with the subproblems, a hybrid algorithm is proposed, which combines the active set...
متن کامل