A Spiking Neuron as Information Bottleneck
نویسندگان
چکیده
Neurons receive thousands of presynaptic input spike trains while emitting a single output spike train. This drastic dimensionality reduction suggests considering a neuron as a bottleneck for information transmission. Extending recent results, we propose a simple learning rule for the weights of spiking neurons derived from the information bottleneck (IB) framework that minimizes the loss of relevant information transmitted in the output spike train. In the IB framework, relevance of information is defined with respect to contextual information, the latter entering the proposed learning rule as a "third" factor besides pre- and postsynaptic activities. This renders the theoretically motivated learning rule a plausible model for experimentally observed synaptic plasticity phenomena involving three factors. Furthermore, we show that the proposed IB learning rule allows spiking neurons to learn a predictive code, that is, to extract those parts of their input that are predictive for future input.
منابع مشابه
Spiking Neurons Can Learn to Solve Information Bottleneck Problems and Extract Independent Components
Independent component analysis (or blind source separation) is assumed to be an essential component of sensory processing in the brain and could provide a less redundant representation about the external world. Another powerful processing strategy is the optimization of internal representations according to the information bottleneck method. This method would allow extracting preferentially tho...
متن کاملFunction Identification in Neuron Populations via Information Bottleneck
It is plausible to hypothesize that the spiking responses of certain neurons represent functions of the spiking signals of other neurons. A natural ensuing question concerns how to use experimental data to infer what kind of a function is being computed. Model-based approaches typically require assumptions on how information is represented. By contrast, information measures are sensitive only t...
متن کاملBiological and Functional Models of Learning in Networks of Spiking Neurons
Neural circuits generally process information in a massively parallel way and exhibit a communication between the constituent units based on spikes, i.e. binary events, therefore differing fundamentally from many artificial information processing and learning systems. In such neural circuits, synaptic plasticity is widely considered to be the main biophysical correlate of learning. This thesis ...
متن کاملSimplified Rules and Theoretical Analysis for Information Bottleneck Optimization and PCA with Spiking Neurons
We show that under suitable assumptions (primarily linearization) a simple and perspicuous online learning rule for Information Bottleneck optimization with spiking neurons can be derived. This rule performs on common benchmark tasks as well as a rather complex rule that has previously been proposed [1]. Furthermore, the transparency of this new learning rule makes a theoretical analysis of its...
متن کاملTraining of spiking neural networks based on information theoretic costs
Spiking neural network is a type of artificial neural network in which neurons communicate between each other with spikes. Spikes are identical Boolean events characterized by the time of their arrival. A spiking neuron has internal dynamics and responds to the history of inputs as opposed to the current inputs only. Because of such properties a spiking neural network has rich intrinsic capabil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 22 8 شماره
صفحات -
تاریخ انتشار 2010