Elimination theory in codimension one and applications
نویسنده
چکیده
In these notes, we present a general framework to compute the codimension one part of the elimination ideal of a system of homogeneous polynomials. It is based on the computation of the so-called MacRae’s invariants that we will obtain by means of determinants of complexes. Our approach mostly uses tools from commutative algebra. We begin with some basics on elimination theory and then introduce the MacRae’s invariant and the so-called determinants of complexes. The rest of these notes illustrates our approach through two important examples: the Macaulay’s resultant of n homogeneous polynomials in n variables and the computation of an implicit equation of a parameterized hypersurface using syzygies. Key-words: Elimination theory, homogeneous polynomial systems, resultants, determinants of complexes, computational algebra, implicitization of rational hypersurfaces. Notes of lectures given at the CIMPA-UNESCO-IRAN school in Zanjan, Iran, July 9-22 2005. in ria -0 00 77 12 0, v er si on 3 4 M ar 2 01 3 Théorie de l’élimination en codimension un et applications Résumé : Dans ces notes, nous présentons une approche algébrique pour calculer la partie de codimension un d’un idéal d’élimination d’un système de polynômes homogènes. Elle repose principalement sur le calcul d’invariants dits de MacRae que nous obtiendrons en termes de déterminants de complexes. Dans un premier temps des résultats essentiels de la théorie de l’élimination sont rappelés puis les invariants de MacRae et les déterminants de complexes sont introduits. Le reste de ces notes illustre cette approche au travers de deux exemples: le résultant de Macaulay de n polynômes homogènes en n variables puis le calcul de l’équation implicite d’une hypersurface paramétrée en utilisant les syzygies de cette paramétrisation. Mots-clés : Théorie de l’élimination, systèmes de polynômes homogènes, résultants, déterminants de complexes, calcul formel, implicitation d’hypersurfaces rationnelles. in ria -0 00 77 12 0, v er si on 3 4 M ar 2 01 3 Elimination theory in codimension one and applications 3 In these notes, we present a general framework to compute the codimension one part of the elimination ideal of a system of homogeneous polynomials. It is based on the socalled MacRae’s invariants that can be obtained by means of determinants of complexes. Our approach mostly uses tools from commutative algebra and is inspired by the works of Jean-Pierre Jouanolou [22, 23, 25] (see also [31] for a similar point of view). We begin with some basics on elimination theory. Then, in section 2, we introduce the MacRae’s invariant and the so-called determinants of complexes that will allow us to compute this invariant. The rest of these notes illustrates our approach through two examples: the Macaulay’s resultant of n homogeneous polynomials in n variables and the computation of an implicit equation of a parameterized hypersurface using syzygies. The first one is treated in section 3 where we follow the monograph [22]. The second one, treated in section 4, report on joint works with Marc Chardin and Jean-Pierre Jouanolou [7, 4, 8]. All along the way, we will recall some tools from commutative algebra and algebraic geometry which may be useful for other purposes.
منابع مشابه
2 7 Fe b 20 01 Elimination Theory in Codimension Two
New formulas are given for Chow forms, discriminants and resultants arising from (not necessarily normal) toric varieties of codimension 2. The Newton polygon of the discriminant is determined exactly.
متن کاملElimination Theory in Codimension Two
New formulas are given for Chow forms, discriminants and resultants arising from (not necessarily normal) toric varieties of codimension 2. The Newton polygon of the discriminant is determined exactly.
متن کاملAPPROXIMATE IDENTITY IN CLOSED CODIMENSION ONE IDEALS OF SEMIGROUP ALGEBRAS
Let S be a locally compact topological foundation semigroup with identity and Ma(S) be its semigroup algebra. In this paper, we give necessary and sufficient conditions to have abounded approximate identity in closed codimension one ideals of the semigroup algebra $M_a(S)$ of a locally compact topological foundationsemigroup with identity.
متن کاملComplete Intersections in Toric Ideals
We present examples which show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the study of the Horn system of partial differential equations.
متن کامل