Consolidated method to predicting pressure drop and heat transfer coefficient for both subcooled and saturated flow boiling in micro-channel heat sinks

نویسندگان

  • Sung-Min Kim
  • Issam Mudawar
چکیده

Published studies concerning transport phenomena in micro-channel heat sinks can be divided into those concerning saturated boiling versus those focused on subcooled boiling, with the vast majority related to the former. What has been lacking is a single generalized method to tackle both boiling regimes. The primary objective of the present paper is to construct a consolidated method to predicting transport behavior of micro-channel heat sinks incurring all possible heat transfer regimes. First, a new correlation is developed for subcooled flow boiling pressure drop that accounts for inlet subcooling, micro-channel aspect ratio, and length-to-diameter ratio. This correlation shows excellent predictive capability against subcooled HFE 7100 pressure drop data corresponding to four different micro-channel geometries. Next, a consolidated method is developed for pressure drop that is capable of tackling inlet single-phase liquid, subcooled boiling, saturated boiling, and single-phase vapor regimes as well as inlet contraction and outlet expansion. A similar consolidated method is developed to predict the heat transfer coefficient that is capable of tackling all possible combinations of heat transfer regimes. The new consolidated method is shown to be highly effective at reproducing both data and trends for HFE 7100, water and R134a. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 2. Subcooled boiling pressure drop and heat transfer

This second part of a two-part study explores the performance of a new cooling scheme in which the primary working fluid flowing through a micro-channel heat sink is indirectly cooled by a refrigeration cooling system. The objective of this part of study is to explore the pressure drop and heat transfer characteristics of the heat sink. During single-phase cooling, pressure drop decreased with ...

متن کامل

Flow boiling heat transfer in two-phase micro-channel heat sinks––II. Annular two-phase flow model

This paper is Part II of a two-part study devoted to measurement and prediction of the saturated flow boiling heat transfer coefficient in water-cooled micro-channel heat sinks. Part I discussed the experimental findings from the study, and identified unique aspects of flow boiling in micro-channels such as abrupt transition to the annular flow regime near the point of zero thermodynamic equili...

متن کامل

Two Phase Flow Simulation for Subcooled Nucleat Boiling Heat Transfer Calculation in Water Jacket of Diesel Engine

Basic understanding of the process of coolant heat transfer inside an engine is an indispensable prerequisite to devise an infallible cooling strategy. Coolant flow and its heat transfer affect the cooling efficiency, thermal load of heated components, and thermal efficiency of a diesel engine. An efficient approach to studying cooling system for diesel engine is a 3D computational fluid dynami...

متن کامل

Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling

This paper is a part of a recent series of studies by the authors to develop universal predictive tools for pressure drop and heat transfer coefficient for mini/micro-channel flows that are capable of tackling fluids with drastically different thermophysical properties and very broad ranges of all geometrical and flow parameters of practical interest. In this study, a new technique is proposed ...

متن کامل

Simulation of Subcooled Flow Boiling Occurring in Internal Combustion Engine Water Jacket by Numerical Modeling in a Channel with Hot Spot

Boiling heat transfer always has been proposed as a solution for enhancing heat transfer between the fluid and solid surfaces. Subcooled flow boiling is one of the mechanisms that occur in Internal Combustion Engine water jacket in which high amounts of heat is transferred. In this research, it has been tried to simulate subcooled flow boiling in a geometry similar to coolant channel inside the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012