Anodization-based process for the fabrication of all niobium nitride Josephson junction structures

نویسندگان

  • Massimiliano Lucci
  • Ivano Ottaviani
  • Matteo Cirillo
  • Fabio De Matteis
  • Roberto Francini
  • Vittorio Merlo
  • Ivan Davoli
چکیده

We studied the growth and oxidation of niobium nitride (NbN) films that we used to fabricate superconductive tunnel junctions. The thin films were deposited by dc reactive magnetron sputtering using a mixture of argon and nitrogen. The process parameters were optimized by monitoring the plasma with an optical spectroscopy technique. This technique allowed us to obtain NbN as well as good quality AlN films and both were used to obtain NbN/AlN/NbN trilayers. Lift-off lithography and selective anodization of the NbN films were used, respectively, to define the main trilayer geometry and/or to separate electrically, different areas of the trilayers. The anodized films were characterized by using Auger spectroscopy to analyze compounds formed on the surface and by means of a nano-indenter in order to investigate its mechanical and adhesion properties. The transport properties of NbN/AlN/NbN Josephson junctions obtained as a result of the above described fabrication process were measured in liquid helium at 4.2 K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and measurement of a niobium persistent current qubit

Recent successes with superconducting Josephson junction qubits make them prime candidates for the implementation of quantum computing. This doctoral thesis details the study of a niobium Josephson junction circuit for quantum computing applications. The thesis covers two main areas: 1) the fabrication of sub-micron niobium Josephson junction devices using a Nb/Al/AlO./Nb trilayer process and 2...

متن کامل

Improved Critical-Current-Density Uniformity of Nb Superconducting Fabrication Process Using Anodization Personnel

cross-wafer standard deviation of Jc was typically ~ 5% for anodized wafers but was ≥15% for unanodized wafers (Figure 6). A low variation in Jc results in a higher yield of device chips per wafer with the desired current density. As a result of the improved cross-wafer distribution, the cross-chip uniformity is greatly improved as well; typically < 1% for anodized chips. Low cross-chip Jc vari...

متن کامل

Hexagonal symmetry of magnetic field dependence of Josephson current through triangle shape superconducting junctions

We have found hexagonal symmetry in the dependence of Josephson current of triangle shape junctions upon external magnetic field. Niobium/aluminum-oxide/niobium junctions are fabricated using magnetron sputtering of niobium and thermal oxidation of aluminum layers. Selective niobium anodization process has been used to define junction areas. In the case of square shaped junction, dependence of ...

متن کامل

Improved Critical-Current-Density Uniformity by Using Anodization

We discuss an anodization technique for a Nb superconductive-electronics-fabrication process that results in an improvement in critical-current-density uniformity across a 150-mm-diameter wafer. We outline the anodization process and describe the metrology techniques used to determine the NbO thickness grown. In the work described, we performed critical current measurements on Josephson junctio...

متن کامل

Rapid and controlled electrochemical synthesis of crystalline niobium oxide microcones

We demonstrate the fabrication by anodization of niobium oxide microcones, several microns long, from aqueous solutions of 1 wt% hydrogen fluoride (HF) with varied sodium fluoride (NaF) concentration (0–1 M). Raman spectroscopy and x-ray diffractometer analysis revealed the as-grown microcones to be crystalline Nb2O5−x with preferred (1 0 0) and (0 1 0) orientations. The overall Nb2O5−x formati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017