Improving Driver Alertness through Music Selection Using a Mobile EEG to Detect Brainwaves
نویسندگان
چکیده
Driving safety has become a global topic of discussion with the recent development of the Smart Car concept. Many of the current car safety monitoring systems are based on image discrimination techniques, such as sensing the vehicle drifting from the main road, or changes in the driver's facial expressions. However, these techniques are either too simplistic or have a low success rate as image processing is easily affected by external factors, such as weather and illumination. We developed a drowsiness detection mechanism based on an electroencephalogram (EEG) reading collected from the driver with an off-the-shelf mobile sensor. This sensor employs wireless transmission technology and is suitable for wear by the driver of a vehicle. The following classification techniques were incorporated: Artificial Neural Networks, Support Vector Machine, and k Nearest Neighbor. These classifiers were integrated with integration functions after a genetic algorithm was first used to adjust the weighting for each classifier in the integration function. In addition, since past studies have shown effects of music on a person's state-of-mind, we propose a personalized music recommendation mechanism as a part of our system. Through the in-car stereo system, this music recommendation mechanism can help prevent a driver from becoming drowsy due to monotonous road conditions. Experimental results demonstrate the effectiveness of our proposed drowsiness detection method to determine a driver's state of mind, and the music recommendation system is therefore able to reduce drowsiness.
منابع مشابه
Music Recommendation System Based on Preference Classification of Real-time User Brainwave
In order to predict user-favorite songs, managing user preferences information and genre classification are necessary. In this paper, we propose a preference classification about content based on real-time user brainwave and a music recommendation system based on it. We focused on classifying real-time user preferences by analyzing the user’s brainwaves. The brainwaves are acquired using a wire...
متن کاملPlymouth brain-Computer Music Interface Project: Intelligent assistive Technology for Music-Making
This paper introduces a system that uses brainwaves, or EEG (electroencephalogram), information to compose and play music in real-time. The system composes music using generative grammars and transition rules controlled by means of information extracted from the EEG of the subject. The paper starts by noting the various attempts at the design of systems that make music from the EEG signals, fol...
متن کاملInvestigating Driver Fatigue versus Alertness Using the Granger Causality Network
Driving fatigue has been identified as one of the main factors affecting drivers' safety. The aim of this study was to analyze drivers' different mental states, such as alertness and drowsiness, and find out a neurometric indicator able to detect drivers' fatigue level in terms of brain networks. Twelve young, healthy subjects were recruited to take part in a driver fatigue experiment under dif...
متن کاملFusion of EEG and Musical Features in Continuous Music-emotion Recognition
* [email protected] Abstract Emotion estimation in music listening is confronting challenges to capture the emotion variation of listeners. Recent years have witnessed attempts to exploit multimodality fusing information from musical contents and physiological signals captured from listeners to improve the performance of emotion recognition. In this paper, we present a study of ...
متن کاملA Context-Aware EEG Headset System for Early Detection of Driver Drowsiness
Driver drowsiness is a major cause of mortality in traffic accidents worldwide. Electroencephalographic (EEG) signal, which reflects the brain activities, is more directly related to drowsiness. Thus, many Brain-Machine-Interface (BMI) systems have been proposed to detect driver drowsiness. However, detecting driver drowsiness at its early stage poses a major practical hurdle when using existin...
متن کامل