Error Analysis of a Spectral Projection of the Regularized Benjamin–ono Equation
نویسنده
چکیده
The regularized Benjamin–Ono equation appears in the modeling of long-crested interfacial waves in two-fluid systems. For this equation, Fourier–Galerkin and collocation semi-discretizations are proved to be spectrally convergent. A new exact solution is found and used for the experimental validation of the numerical algorithm. The scheme is then used to study the interaction of two solitary waves. AMS subject classification (2000): 35Q53, 65M12, 65M70.
منابع مشابه
Application of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کاملAn approximation to the solution of Benjamin-Bona-Mahony-Burgers equation
In this paper, numerical solution of the Benjamin-Bona-Mahony-Burgers (BBMB) equation is obtained by using the mesh-free method based on the collocation method with radial basis functions (RBFs). Stability analysis of the method is discussed. The method is applied to several examples and accuracy of the method is tested in terms of $L_2$ and $L_infty$ error norms.
متن کاملA new integrable system: The interacting soliton of the BO
The interacting soliton equation of the Benjamin-Ono equation is found to be st = Hsxx − csx − isxH(s−1sx) − is−1sxH(sx), where H is the Hilbert transform. It is integrable in the sense that it has infinitely many commuting symmetries and conservation laws in involution. Only solitons with speed specified by the spectral parameter c emerge from its time evolution. Since it is connected to the B...
متن کاملOptimization of Solution Regularized Long-wave Equation by Using Modified Variational Iteration Method
In this paper, a regularized long-wave equation (RLWE) is solved by using the Adomian's decomposition method (ADM) , modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by ...
متن کاملError Estimates for a Fully Discrete Spectral Scheme for a Class of Nonlinear, Nonlocal Dispersive Wave Equations
We analyze a fully discrete spectral method for the numerical solution of the initial-and periodic boundary-value problem for two nonlinear, non-local, dispersive wave equations, the Benjamin-Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier-Galerkin spectral method and in time by the explicit leapfrog scheme. For the resulting fully di...
متن کامل