Emx1 Is Required for Neocortical Area Patterning.

نویسندگان

  • Adam M Stocker
  • Dennis D M O'Leary
چکیده

Establishing appropriate area patterning in the neocortex is a critical developmental event, and transcription factors whose expression is graded across the developing neural axes have been implicated in this process. While previous reports suggested that the transcription factor Emx1 does not contribute to neocortical area patterning, those studies were performed at perinatal ages prior to the emergence of primary areas. We therefore examined two different Emx1 deletion mouse lines once primary areas possess mature features. Following the deletion of Emx1, the frontal and motor areas were expanded while the primary visual area was reduced, and overall the areas shifted posterio-medially. This patterning phenotype was consistent between the two Emx1 deletion strategies. The present study demonstrates that Emx1 is an area patterning transcription factor and is required for the specification of the primary visual area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emx1 and Emx2 functions in development of dorsal telencephalon.

The genes Emx1 and Emx2 are mouse cognates of a Drosophila head gap gene, empty spiracles, and their expression patterns have suggested their involvement in regional patterning of the forebrain. To define their functions we introduced mutations into these loci. The newborn Emx2 mutants displayed defects in archipallium structures that are believed to play essential roles in learning, memory and...

متن کامل

FGF8 acts as a classic diffusible morphogen to pattern the neocortex.

Gain- and loss-of-function experiments have demonstrated that a source of fibroblast growth factor (FGF) 8 regulates anterior to posterior (A/P) patterning in the neocortical area map. Whether FGF8 controls patterning as a classic diffusible morphogen has not been directly tested. We report evidence that FGF8 diffuses through the mouse neocortical primordium from a discrete source in the anteri...

متن کامل

Dev119909 3746..3757

Transcription factors act during cortical development as master regulatory genes that specify cortical arealization and cellular identities. Although numerous transcription factors have been identified as being crucial for cortical development, little is known about their downstream targets and how theymediate the emergence of specific neuronal connections via selective axon guidance. The EMX t...

متن کامل

Genomic characterisation of a Fgf-regulated gradient-based neocortical protomap.

Recent findings support a model for neocortical area formation in which neocortical progenitor cells become patterned by extracellular signals to generate a protomap of progenitor cell areas that in turn generate area-specific neurons. The protomap is thought to be underpinned by spatial differences in progenitor cell identity that are reflected at the transcriptional level. We systematically i...

متن کامل

Fibroblast growth factor 8 organizes the neocortical area map and regulates sensory map topography.

The concept of an "organizer" is basic to embryology. An organizer is a portion of the embryo producing signals that lead to the creation of a patterned mature structure from an embryonic primordium. Fibroblast growth factor 8 (FGF8) is a morphogen that disperses from a rostromedial source in the neocortical primordium (NP), forms a rostral-to-caudal (R/C) gradient, and regulates embryonic and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2016