Recognizing Chordal-Bipartite Probe Graphs

نویسندگان

  • A. Berry
  • E. Cohen
  • M. C. Golumbic
  • M. Lipshteyn
  • N. Pinet
  • A. Sigayret
  • M. Stern
چکیده

A graph G is chordal-bipartite probe if its vertices can be partitioned into two sets P (probes) and N (non-probes) where N is a stable set and such thatG can be extended to a chordal-bipartite graph by adding edges between non-probes. A bipartite graph is called chordal-bipartite if it contains no chordless cycle of length strictly greater than 5. Such probe/non-probe completion problems have been studied previously on other families of graphs, such as interval graphs and chordal graphs. In this paper, we give a characterization of chordal-bipartite probe graphs, in the case of a fixed given partition of the vertices into probes and nonprobes. Our results are obtained by solving first the more general case without assuming that N is a stable set, and then this can be applied to the more specific case. Our characterization uses an edge elimination ordering which also implies a polynomial time recognition algorithm for the class. This research was conducted in the context of a France-Israel Binational project, while the French team visited Haifa in March 2007.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Bi-enhancement of Chordal-bipartite Probe Graphs

Lately, a lot of research has been done on C -probe graphs. In this paper we focus on chordal-bipartite probe graphs. We prove a structural result that if B is a bipartite graph with no chordless cycle of length strictly greater than 6, then B is chordalbipartite probe if and only if a certain “enhanced” graph B∗ is a chordal-bipartite graph. This theorem is analogous to a result on interval pr...

متن کامل

Hardness Results and Efficient Algorithms for Graph Powers

The k-th power H of a graph H is obtained from H by adding new edges between every two distinct vertices having distance at most k in H . Lau [Bipartite roots of graphs, ACM Transactions on Algorithms 2 (2006) 178–208] conjectured that recognizing k-th powers of some graph is NP-complete for all fixed k ≥ 2 and recognizing k-th powers of a bipartite graph is NP-complete for all fixed k ≥ 3. We ...

متن کامل

Chordal bipartite graphs of bounded tree- and clique-width

A bipartite graph is chordal bipartite if every cycle of length at least six has a chord. In the class of chordal bipartite graphs the tree-width and the clique-width are unbounded. Our main results are that chordal bipartite graphs of bounded vertex degree have bounded tree-width and that k-fork-free chordal bipartite graphs have bounded clique-width, where a k-fork is the graph arising from a...

متن کامل

The Dilworth Number of Auto-Chordal-Bipartite Graphs

The mirror (or bipartite complement) mir(B) of a bipartite graph B = (X,Y,E) has the same color classes X and Y as B, and two vertices x ∈ X and y ∈ Y are adjacent in mir(B) if and only if xy / ∈ E. A bipartite graph is chordal bipartite if none of its induced subgraphs is a chordless cycle with at least six vertices. In this paper, we deal with chordal bipartite graphs whose mirror is chordal ...

متن کامل

Recognizing Chordal Probe Graphs and Cycle-Bicolorable Graphs

A graph G = (V,E) is a chordal probe graph if its vertices can be partitioned into two sets, P (probes) and N (non-probes), where N is a stable set and such that G can be extended to a chordal graph by adding edges between non-probes. We give several characterizations of chordal probe graphs, first, in the case of a fixed given partition of the vertices into probes and non-probes, and second, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007