Mode Decomposition Evolution Equations
نویسندگان
چکیده
Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be easily used for secondary processing. Various simplifications of the proposed MoDEEs, including a linearized version, and an algebraic version, are discussed for computational convenience. The Fourier pseudospectral method, which is unconditionally stable for linearized the high order MoDEEs, is utilized in our computation. Validation is carried out to mode separation of high frequency adjacent modes. Applications are considered to signal and image denoising, image edge detection, feature extraction, enhancement etc. It is hoped that this work enhances the understanding of high order PDEs and yields robust and useful tools for image and signal analysis.
منابع مشابه
On linear and nonlinear aspects of dynamic mode decomposition
The approximation of reduced linear evolution operator (propagator) via dynamic mode decomposition (DMD) is addressed for both linear and nonlinear events. The 2D unsteady supersonic underexpanded jet, impinging the flat plate in nonlinear oscillating mode, is used as the first test problem for both modes. Large memory savings for the propagator approximation are demonstrated. Corresponding pro...
متن کاملThe Transient Dynamics of a Beam Mounted on Spring Supports and Equipped with the Nonlinear Energy Sink
The transient dynamics of a beam mounted on springer-damper support and equipped with a nonlinear energy sink (NES) is investigated under the effects of shock loads. The equations of motion are derived using the Hamilton’s principle leading to four hybrid ordinary and partial differential equations and descritized using the Galerkin method. An adaptive Newmark method is employed for accurate an...
متن کاملRAPID COMMUNICATIONS PHYSICAL REVIEW FLUIDS 1, 032402(R) (2016) Correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations
The relationship between Koopman mode decomposition, resolvent mode decomposition, and exact invariant solutions of the Navier-Stokes equations is clarified. The correspondence rests upon the invariance of the system operators under symmetry operations such as spatial translation. The usual interpretation of the Koopman operator is generalized to permit combinations of such operations, in addit...
متن کاملTwo Stages in Evolution of Binary Alkali BEC Mixtures towards Phase Segregation
The quantum analogy of the usual spinodal decomposition is explored for the recently achieved binary alkali Bose-Einstein condensates mixture. We conclude that an analogy is possible within the formulation of coupled non-linear Schrödinger equations, and find that the quantum spinodal decomposition consists of two stages. The non-equilibrium stage I is dominated by the fastest growth mode, asso...
متن کاملA Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملModified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations
In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of scientific computing
دوره 50 3 شماره
صفحات -
تاریخ انتشار 2012