Perturbation of the direction of neurite growth by pulsed and focal electric fields.

نویسندگان

  • N B Patel
  • M M Poo
چکیده

We have studied the orientation of neurite growth in the culture of embryonic Xenopus neurons in response to three types of extracellular electric fields: spatially uniform pulsed fields, focally applied steady (DC) fields, and focally applied pulsed fields. Under uniform pulsed fields, neurites showed a preferential orientation toward the cathode pole of the field in a manner similar to that previously found for DC fields. The extent of neurite orientation depended upon the duration, amplitude, and frequency of the pulse but appeared to be similar to that produced by a uniform DC field of an equivalent time-averaged field intensity. For square pulses of 5 msec duration, the minimal amplitude and frequency required to produce a detectable orientation of neurite growth over a period of 24 hr were 2.5 V/cm and 10 Hz, which correspond to a time-averaged field intensity of 125 mV/cm. Steady or pulsed focal fields were applied by passing a current through a micropipette placed near the growth cone of the neurite. Fields of negative polarity (current sink) were found to attract the growth cone, whereas fields of positive polarity (current source) were found to deflect the growth cone away from the pipette. The threshold DC current density needed at the growth cone to perturb its direction of growth within 15 min was 0.2 to 2 pA/micron2 (or 3 to 30 mV/cm); and for focal pulsed currents (pulse duration 5 msec), a typical combination of minimal pulse amplitude and frequency was 4 pA/micron2 and 10 Hz. This threshold focal current is similar to that which occurs at the synaptic cleft during active synaptic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On focused fields with maximum electric field components and images of electric dipoles.

We study focused fields which, for a given total power and a given numerical aperture, have maximum electric field amplitude in some direction in the focal point and are linearly polarized along this direction. It is shown that the optimum field is identical to the image of an electric dipole with unit magnification. In particular, the field which is the image of an electric dipole whose dipole...

متن کامل

Electro-Thermo-Mechanical Response of Thick-Walled Piezoelectric Cylinder Reinforced by BNNTs

Electro-thermo-elastic stress analysis of piezoelectric polymeric thick-walled cylinder reinforced by boronnitride nanotubes (BNNTs) subjected to electro-thermo-mechanical fields is presented in this article. The electro-thermo-elastic properties of piezoelectric fiber reinforced composite (PEFRC) was studied by a modified XY micromechanical model capable of exhibiting full coupling relati...

متن کامل

Orientation of Neurite Growth by Extracellular

Extracellularly applied steady electric fields of 0.1 to 10 V/cm were found to have marked effects on the neurite growth of single dissociated Xenopus neurons in culture: (1) neurites facing the cathode showed accelerated growth, while the growth of those facing the anode was reduced. Neurites growing relatively perpendicular to the field axis were prompted to curve toward the cathode. (2) More...

متن کامل

Extremely low frequency-pulsed electromagnetic fields affect proangiogenic-related gene expression in retinal pigment epithelial cells

Objective(s): It is known that extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) influence multiple cellular and molecular processes. Retinal pigment epithelial (RPE) cells have a significant part in the emergence and pathophysiology of several ocular disorders, such as neovascularization. This study assessed the impact of ELF-PEMF on the proangiogenic features of RPE cells. Mate...

متن کامل

بررسی آشوب اتلافی در ابرشبکه‌های نیمرسانا

In this paper the motion of electron in a miniband of a semiconductor superlattice (SSL) under the influence of external electric and magnetic fields is investigated. The electric field is applied in a direction perpendicular to the layers of the semiconductor superlattice, and the magnetic field is applied in different direction Numerical calculations show conditions led to the possibility of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 4 12  شماره 

صفحات  -

تاریخ انتشار 1984