Microfluidic preparative free-flow isoelectric focusing: system optimization for protein complex separation.

نویسندگان

  • Jian Wen
  • Erik W Wilker
  • Michael B Yaffe
  • Klavs F Jensen
چکیده

Isoelectric focusing (IEF) is the first step for two-dimensional (2D) gel electrophoresis and plays an important role in sample purification for proteomics. However, biases in protein size and pI resolution, as well as limitations in sample volume, gel capacity, sample loss, and experimental time, remain challenges. In order to address some of the limitations of traditional IEF, we present a microfluidic free flow IEF (FF-IEF) device for continuous protein separation into 24 fractions. The device reproducibly establishes a nearly linear pH gradient from 4 to 10. Optimized dynamic coatings of 4% poly(vinyl alcohol) (PVA) minimize peak broadening by transverse electrokinetic flows. Even though the device operates at high electric fields (up to 370 V/cm), efficient cooling maintains solution temperature inside the separation channel controllably in the range 2-25 degrees C. Protein samples with a dynamic concentration range from microg/mL to mg/mL can be loaded into the microdevice at a flow rate of 1 mL/h and residence time of approximately 12 min. By using a protein complex of nine proteins and 13 isoforms, we demonstrate improved separation with the FF-IEF system over traditional 2D gel electrophoresis. Device-to-device reproducibility is also illustrated through the efficient depletion of the albumin and hemoglobin assays. Post-device sample concentrations result in a 10-20-fold increase, which allow for isolation and detection of low abundance proteins. The separation of specific proteins from a whole cell lysate is demonstrated as an example. The microdevice has the further benefits of retaining high molecular weight proteins, providing higher yield of protein that has a broader range in pI, and reducing experimental time compared to conventional IEF IGP gel strip approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic Protein Separation by Free Flow Isoelectric Focusing

Disposable, inexpensive microfluidic devices have the potential to become a robust tool for proteomic research for separating and identifying proteins and protein complexes. In this work, a preparative scale free flow IEF isoelectric focusing (FFIEF) device was designed, investigated, and optimized. A constant electric field of up to 350V/cm was generated across the separation channel upon opti...

متن کامل

Microfluidic preparative free-flow isoelectric focusing in a triangular channel: System development and characterization Citation

A preparative scale free-flow isoelectric focusing (FF-IEF) device is developed and characterized with the aim of addressing needs of molecular biologists working with protein samples on the milligrams and milliliters scale. A triangular-shape separation channel facilitates the establishment of the pH gradient with a corresponding increase in separation efficiency and decrease in focusing time ...

متن کامل

Microfluidic preparative free-flow isoelectric focusing in a triangular channel: system development and characterization.

A preparative scale free-flow IEF device is developed and characterized with the aim of addressing needs of molecular biologists working with protein samples on the milligrams and milliliters scale. A triangular-shape separation channel facilitates the establishment of the pH gradient with a corresponding increase in separation efficiency and decrease in focusing time compared with that in a re...

متن کامل

Label-free microfluidic free-flow isoelectric focusing, pH gradient sensing and near real-time isoelectric point determination of biomolecules and blood plasma fractions.

We demonstrate the fabrication, characterization and application of microfluidic chips capable of continuous electrophoretic separation via free flow isoelectric focussing (FFIEF). By integration of a near-infrared (NIR) fluorescent pH sensor layer under the whole separation bed, on-line observation of the pH gradient and determination of biomolecular isoelectric points (pI) was achieved within...

متن کامل

Microfluidic free-flow electrophoresis chips with an integrated fluorescent sensor layer for real time pH imaging in isoelectric focusing.

Functional microfluidic free-flow electrophoresis chips with integrated fluorescent pH sensors are presented. Polyethylene glycol based structures were fabricated that allowed for integration of both functions on a single microchip. Microchips were applied in free-flow isoelectric focusing of model compounds and proteins with on-line monitoring of pH during microscale electrophoretic separation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 82 4  شماره 

صفحات  -

تاریخ انتشار 2010