Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates
نویسندگان
چکیده
Matrix compression techniques in the context of wavelet Galerkin schemes for boundary integral equations are developed and analyzed that exhibit optimal complexity in the following sense. The fully discrete scheme produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that is proven to stay proportional to the number of unknowns. Key issues are the second compression, which reduces the near field complexity significantly, and an additional a posteriori compression. The latter is based on a general result concerning an optimal work balance that applies, in particular, to the quadrature used to compute the compressed stiffness matrix with sufficient accuracy in linear time.
منابع مشابه
Adaptive methods for boundary integral equations: Complexity and convergence estimates
This paper is concerned with developing numerical techniques for the adaptive application of global operators of potential type in wavelet coordinates. This is a core ingredient for a new type of adaptive solvers that has so far been explored primarily for PDEs. We shall show how to realize asymptotically optimal complexity in the present context of global operators. “Asymptotically optimal” me...
متن کاملAdaptive wavelet techniques in Numerical Simulation
This chapter highlights recent developments concerning adaptive wavelet methods for time dependent and stationary problems. The first problem class focusses on hyperbolic conservation laws where wavelet concepts exploit sparse representations of the conserved variables. Regarding the second problem class, we begin with matrix compression in the context of boundary integral equations where the k...
متن کاملA Fast Solver for Boundary Integral Equations of the Modified Helmholtz Equation
The main purpose of this paper is to develop a fast fully discrete Fourier– Galerkin method for solving the boundary integral equations reformulated from the modified Helmholtz equation with boundary conditions. We consider both the nonlinear and the Robin boundary conditions. To tackle the difficulties caused by the two types of boundary conditions, we provide an improved version of the Galerk...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملAdaptive Application of Operators in Standard
Recently adaptive wavelet methods have been developed which can be shown to exhibit an asymptotically optimal accuracy/work balance for a wide class of variational problems including classical elliptic boundary value problems, boundary integral equations as well as certain classes of non coercive problems such as saddle point problems [8, 9, 12]. A core ingredient of these schemes is the approx...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 43 شماره
صفحات -
تاریخ انتشار 2006